\[x^{4} - 19x^{2} + 48 = 0\]
\[Пусть\ x^{2} = y \geq 0:\]
\[y^{2} - 19y + 48 = 0\]
\[y_{1} + y_{2} = 19;\ \ \ y_{1} \cdot y_{2} = 48\]
\[y_{1} = 3;\ \ \ y_{2} = 16.\]
\[Подставим:\]
\[1)\ x^{2} = 3\]
\[x = \pm \sqrt{3}.\]
\[2)\ x^{2} = 16\]
\[x = \pm 4.\]
\[Ответ:x = \pm \sqrt{3};\ \ x = \pm 4.\]