\[\frac{x - 2}{x + 2} = \frac{x + 3}{x - 4}\]
\[x \neq - 2;\ \ x \neq 4.\]
\[(x - 2)(x - 4) = (x + 2)(x + 3)\]
\[x^{2} - 2x - 4x + 8 = x^{2} + 2x + 3x + 6\]
\[- 6x - 5x = 6 - 8\]
\[- 11x = - 2\]
\[x = \frac{2}{11}.\]