4. Разложите на множители:
1) a) $3xy^2 + 15x^4y^3 + 12x^2y^4 = 3xy^2(1 + 5x^3y + 4xy^2)$
б) $7a^3b^3 - 77a^2b^4 - 21ab^4 = 7ab^3(a^2 - 11ab - 3b^2)$
в) $5a^3x^2y^2 - 15a^3xy^2 - 5a^4y = 5a^3y(x^2y - 3xy - a)$
2) a) $(x+5)(2a+1) + (x+5)(3a-8) = (x+5)(2a+1+3a-8) = (x+5)(5a-7)$
б) $(5m-3)(n+1) - (2n+3)(3-5m) = (5m-3)(n+1) + (2n+3)(5m-3) = (5m-3)(n+1+2n+3) = (5m-3)(3n+4)$
в) $(2a-b)(3a+11) + (5a-11)(b-2a) = (2a-b)(3a+11) - (5a-11)(2a-b) = (2a-b)(3a+11-5a+11) = (2a-b)(-2a+22) = 2(2a-b)(-a+11)$
Убрать каракули