Вопрос:

Ракета на подводных крыльях имеет скорость, на 50 км/ч большую, чем скорость теплохода, и поэтому путь в 210 км она прошла на 7 ч 30 мин быстрее, чем теплоход. Найдите скорость «Ракеты».

Ответ:

\[t,\ ч\] \[V,\ \frac{км}{ч}\] \[S,\ км\]
\[«Ракета»\] \[\frac{210}{x + 50}\ на\ 7\frac{1}{2}ч < \searrow\] \[x + 50\] \[210\]
\[Теплоход\] \[\frac{210}{x}\] \[x\] \[210\]

\[\mathbf{Составим\ уравнение:}\]

\[\frac{210}{x} - \frac{210}{x + 50} = 7\frac{1}{2}\]

\[\frac{210 \cdot (x + 50) - 210x}{x(x + 50)} = \frac{15}{2}\]

\[\frac{210x + 10\ 500 - 210x}{x(x + 50)} = \frac{15}{2}\]

\[2 \cdot 10\ 500 = 15x^{2} + 750x\]

\[15x² + 750x - 21\ 000 = 0\ \ \ |\ :15\]

\[x^{2} + 50x - 1400 = 0\]

\[D = b^{2} - 4ac = 2500 - 4 \cdot ( - 1400) =\]

\[= 2500 + 5600 = 8100\]

\[x_{1} = \frac{- 50 + 90}{2} = \frac{40}{2} = 20\]

\[x_{2} = \frac{- 50 - 90}{2} = - \frac{140}{2} = - 70 < 0 \Longrightarrow\]

\[\Longrightarrow не\ подходит.\]

\[2)\ 20 + 50 = 70\ \left( \frac{км}{ч} \right) - скорость\ «Ракеты».\]

\[Ответ:«Ракета»\ имеет\ скорость\ 70\ \frac{км}{ч}.\]


\[y = \frac{x - 3}{3} + 4\]

\[\frac{x - 3}{3} + 4 < 0\]

\[\frac{x - 3 + 12}{3} < 0\]

\[\frac{x + 9}{3} < 0\]

\[x + 9 < 0\]

\[x < - 9\]

\[\mathbf{Ответ:\ }x \in ( - \infty; - 9).\]

\[9 \cdot (x - 2) - 3 \cdot (2x + 1) > 5x\]

\[9x - 18 - 6x - 3 > 5x\]

\[3x - 21 > 5x\]

\[- 2x > 21\ \ \ \ \ |\ :( - 2)\]

\[x < - 10,5\]

\[Ответ:x \in ( - \infty; - 10,5).\]

\[\left( \sqrt{18} + \sqrt{3} \right) \cdot \sqrt{2} - 0,5\sqrt{24} =\]

\[= \sqrt{36} + \sqrt{6} - 0,5\sqrt{4 \cdot 6} =\]

\[= 6 + \sqrt{6} - 0,5 \cdot 2\sqrt{6}\mathbf{=}\]

\[= 6 + \sqrt{6} - \sqrt{6} = 6.\]


\[\left( \frac{4}{x^{2} - 4} + \frac{1}{2 - x} \right) \cdot \frac{x^{2} + 4x + 4}{3} =\]

\[= \left( \frac{4 - (x + 2)}{x^{2} - 4} \right) \cdot \frac{(x + 2)^{2}}{3} =\]

\[= \frac{(2 - x)(x + 2)^{2}}{(x - 2)(x + 2) \cdot 3} = \frac{- (x - 2)(x + 2)^{2}}{3 \cdot (x - 2)(x + 2)} =\]

\[= - \frac{x + 2}{3}\]


Похожие