\[t,\ ч\] | \[V,\ \frac{км}{ч}\] | \[S,\ км\] | |
---|---|---|---|
\[Плот\] | \[\frac{20}{x}\ на\ 5\ ч\ 20\ мин > \searrow\] | \[x\] | \[20\] |
\[Моторная\ лодка\] | \[\frac{20}{x + 12}\] | \[x + 12\] | \[20\] |
\[\mathbf{Составим\ уравнение:}\]
\[\frac{20}{x} - \frac{20}{x + 12} = 5\frac{1}{3}\]
\[\frac{20 \cdot (x + 12) - 20x}{x(x + 12)} = \frac{16}{3}\]
\[\frac{20x + 240 - 20x}{x^{2} + 12x} = \frac{16}{3}\]
\[240 \cdot 3 = 16x^{2} + 192x\]
\[16x² + 192x - 720 = 0\ \ \ |\ :16\]
\[x^{2} + 12x - 45 = 0\]
\[D = b^{2} - 4ac = 144 - 4 \cdot 1 \cdot ( - 45) =\]
\[= 144 + 180 = 324\]
\[x_{1} = \frac{- 12 + 18}{2} = \frac{6}{2} = 3\]
\[x_{2} = \frac{- 12 - 18}{2} = - \frac{30}{2} = - 15 < 0 \Longrightarrow не\ \]
\[подходит.\]
\[Ответ:3\ \frac{км}{ч} - скорость\ плота.\]
\[y = \frac{12 - x}{6} + 1\]
\[\frac{12 - x}{6} + 1 > 0\]
\[\frac{12 - x + 6}{6} > 0\]
\[\frac{18 - x}{6} > 0\]
\[18 - x > 0\]
\[x < 18\]
\[\mathbf{Ответ:\ }x \in ( - \infty;18).\]
\[a < 0;\ \ \ b > 0\]
\[\ a^{5}b^{6} < 0\]
\[a^{5} < 0\ \ \ и\ \ \ b^{6} > 0\]