Вопрос:

При каждом значении параметра k решите уравнение: x^2-(k+4)x+4k=0.

Ответ:

\[x^{2} - (k + 4)x + 4k = 0\]

\[D = (k + 4)^{2} - 4 \cdot 4k =\]

\[= k^{2} + 8k + 16 - 16k =\]

\[= k² - 8k + 16 = (k - 4)²\]

\[k \neq 4 \Longrightarrow D > 0 \Longrightarrow\]

\[x_{1} = \frac{k + 4 + k - 4}{2} = \frac{2k}{2} = k\]

\[x_{2} = \frac{k + 4 - (k - 4)}{2} =\]

\[= \frac{k + 4 - k + 4}{2} = \frac{8}{2} = 4.\]

\[k = 4 \Longrightarrow D = 0 \Longrightarrow\]

\[x = \frac{k + 4}{2} = \frac{4 + 4}{2} = \frac{8}{2} = 4.\]

\[Ответ:x = k\ и\ x = 4\ при\ k \neq 4;\ \ \]

\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 4\ при\ k = 4.\]

Похожие