Вопрос:

При каком значении x значения выражений x–3, x+4 и 2x–40 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.

Ответ:

\[x - 3;x + 4;2x - 40\]

\[(x + 4)^{2} = (x - 3)(2x - 40)\]

\[x^{2} + 8x + 16 = 2x^{2} - 6x - 40x + 120\]

\[2x^{2} - x^{2} - 46x - 8x + 120 - 16 = 0\]

\[x^{2} - 54x + 104 = 0\]

\[x_{1} + x_{2} = 54;\ \ \ x_{1} \cdot x_{2} = 104\]

\[x_{1} = 52;\ \ x_{2} = 2.\]

\[b_{1} = 52 - 3 = 49;\]

\[b_{2} = 52 + 4 = 56;\]

\[b_{3} = 2 \cdot 52 - 40 = 104 - 40 = 64.\]

\[ИЛИ:\]

\[b_{1} = 2 - 3 = - 1;\]

\[b_{2} = 2 + 4 = 6;\]

\[b_{3} = 2 \cdot 2 - 40 = - 36.\]

Похожие