Вопрос:

При каком значении x значения выражений 2x+6; x+7; x+4 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.

Ответ:

\[b_{1} = 2x + 6;\ \ \]

\[b_{2} = x + 7;\ \ \]

\[b_{3} = x + 4;\ \]

\[\frac{b_{2}}{b_{1}} = \frac{b_{3}}{b_{2}}\]

\[\frac{x + 7}{2x + 6} = \frac{x + 4}{x + 7}\]

\[x \neq - 3;\ \ x \neq - 7\]

\[(x + 7)(x + 7) = (2x + 6)(x + 4)\]

\[x^{2} + 14x + 49 = 2x^{2} + 6x + 8x + 24\]

\[x^{2} = 25\]

\[x = \pm 5.\]

\[b_{1} = - 4;\ \ b_{1} = 16;\]

\[b_{2} = 3;\ \ \ \ \ b_{2} = 12;\ \]

\[b_{3} = - 1;\ \ \ b_{3} = 9\]

\[Ответ:\ - 4;3;\ - 1\ или\ 16;12;9.\]

Похожие