Вопрос:

При каком значении n значения выражений n^2, 2n+3, 3n+4 и n^2+n+7 будут последовательными членами арифметической прогрессии? Найдите члены этой прогрессии.

Ответ:

\[n^{2},\ \ 2n + 3,\ \ 3n + 4,\ \ \]

\[n^{2} + n + 7\]

\[\left\{ \begin{matrix} 2n + 3 = \frac{n^{2} + 3n + 4}{2}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ 3n + 4 = \frac{2n + 3 + n^{2} + n + 7}{2} \\ \end{matrix}\text{\ \ \ \ \ \ \ \ \ \ } \right.\ \]

\[\left\{ \begin{matrix} n^{2} + 3n + 4 - 4n - 6 = 0\ \ \\ 3n + n^{2} + 10 - 6n - 8 = 0 \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} n^{2} - n - 2 = 0\ \ \\ n^{2} - 3n + 2 = 0 \\ \end{matrix} \right.\ \]


Похожие