\[\left\{ \begin{matrix} 2x + 3y = 4 \\ x - y = - 3\ \ \\ x + 2y = c\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} x = y - 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2 \cdot (y - 3) + 3y = 4 \\ (y - 3) + 2y = c\ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 2y - 6 + 3y = 4 \\ y - 3 + 2y = c\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\left\{ \begin{matrix} 5y = 10\ \ \ \ \ \\ c = 3y - 3 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\left\{ \begin{matrix} y = 2 \\ c = 3 \\ \end{matrix} \right.\ \]
\[Ответ:при\ c = 3.\]
\[\left\{ \begin{matrix} xy = 8\ \ \ \ \ \\ x + y = 6 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\left\{ \begin{matrix} x = 6 - y\ \ \ \ \ \ \ \ \ \ \\ (6 - y) \cdot y = 8 \\ \end{matrix} \right.\ \]
\[6y - y^{2} = 8\]
\[y^{2} - 6y + 8 = 0\]
\[D_{1} = 9 - 8 = 1\]
\[y_{1} = 3 + 1 = 4 \rightarrow x_{1} = 2;\]
\[y_{2} = 3 - 1 = 2 \rightarrow x_{2} = 4.\]
\[Ответ:(2;4);(4;2).\]
\[x^{2} - y = - 1 \rightarrow y = x^{2} + 1 \rightarrow парабола.\]
\[x + y = 1 \rightarrow y = 1 - x \rightarrow прямая.\]
\[x^{2} + 1 = 1 - x\]
\[x^{2} + x = 0\]
\[x(x + 1) = 0\]
\[x_{1} = 0 \rightarrow y = 1;\]
\[x_{2} = - 1;y_{2} = 2.\]
\[Ответ:(0;1);( - 1;2).\]
\[P = 34\ см;\ \ d = 13\ см.\]
\[a + b = 34\ :2 = 17\ см.\]
\[\left\{ \begin{matrix} a + b = 17\ \ \ \ \ \ \\ a^{2} + b^{2} = 169 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} a = 17 - b\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (17 - b)^{2} + b^{2} = 169 \\ \end{matrix} \right.\ \]
\[289 - 34b + b^{2} + b^{2} = 169\]
\[2b^{2} - 34b + 120 = 0\ \ \ |\ :2\]
\[b^{2} - 17b + 60 = 0\]
\[b_{1} + b_{2} = 17;\ \ b_{1} \cdot b_{2} = 60\]
\[b_{1} = 12 \rightarrow a_{1} = 5;\text{\ \ }\]
\[b_{2} = 5 \rightarrow a_{2} = 12.\]
\[Ответ:длины\ сторон\ 5\ см\ и\ 12\ см.\]
\[0,5x^{2} = \frac{1}{x}\]
\[y = 0,5x^{2};\ \ y = \frac{1}{x}.\]
\[Ответ:уравнение\ имеет\ один\ корень.\]
\[\left\{ \begin{matrix} (x + 2)(y - 1) = 0 \\ x^{2} - xy - 12 = 0\ \ \\ \end{matrix} \right.\ \]
\[x + 2 = 0\]
\[x = - 2:\]
\[( - 2)^{2} + 2y - 12 = 0\]
\[2y - 8 = 0\]
\[2y = 8\]
\[y = 4.\]
\[y - 1 = 0\]
\[y = 1:\]
\[x^{2} - x - 12 = 0\]
\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 12\]
\[x_{1} = 4;\ \ \ \ x_{2} = 3.\]
\[Ответ:( - 2;4);(4;1);(3;1).\]
\[Так\ как\ парабола\ проходит\ через\ \]
\[начало\ координат,\ то\ уравнение\ \]
\[имеет\ вид:\]
\[y = ax^{2}.\]
\[Точка\ (3;\ - 3):\]
\[- 3 = a \cdot 3^{2}\]
\[9a = - 3\]
\[a = - \frac{1}{3}.\]
\[Уравнение:\]
\[y = - \frac{1}{3}x^{2}.\]
\[При\ y = - 27:\]
\[- \frac{1}{3}x^{2} = - 27\]
\[x^{2} = 27 \cdot 3\]
\[x^{2} = 81\]
\[x = \pm 9.\]
\[Парабола\ пересекает\ прямую\ y = - 27\ \]
\[в\ точках\ ( - 9;\ - 27);(9;\ - 27).\]