Вопрос:

Представьте в виде дроби (5-4y)/(y^2-6y)+4/(y-6)

Ответ:

\[\text{\ \ }\frac{5 - 4y}{y^{2} - 6y} + \frac{4}{y - 6} = \frac{5 - 4y}{y(y - 6)} + \frac{4^{\backslash y}}{y - 6} =\]

\[= \frac{5 - 4y + 4y}{y(y - 6)} = \frac{5}{y^{2} - 6y}\]

\[\frac{12p^{2} - q}{4p} - 3p^{\backslash 4p} = \frac{12p^{2} - q - 12p^{2}}{4p} = \frac{- q}{4p}\]

\[p = - 0,35\ \ и\ \ q = 28:\]

\[\text{\ \ \ }\frac{- q}{4p} = \frac{- 28}{4 \cdot ( - 0,35)} = \frac{- 28}{- 1,4} = 20.\]

Похожие