\[y = \frac{1}{2}x - 2\]
\[x\] | \[0\] | \[2\] |
---|---|---|
\[y\] | \[- 2\] | \[- 1\] |
\[x_{1} < x_{2} \Longrightarrow y_{1} - y_{2} =\]
\[= \frac{1}{2}x_{1} - 2 - \left( \frac{1}{2}x_{2} - 2 \right) =\]
\[= \frac{1}{2}x_{1} - 2 - \frac{1}{2}x_{2} + 2 =\]
\[= \frac{1}{2}x_{1} - \frac{1}{2}x_{2} = \frac{1}{2} \cdot \left( x_{1} - x_{2} \right) < 0;\]
\[y_{1} - y_{2} < 0 \Longrightarrow y_{1} < y_{2} \Longrightarrow y =\]
\[= \frac{1}{2}x - 2\ возрастает\ на\ R.\]