\[- 16;\ - 13;\ldots\]
\[a_{1} = - 16;\ \ a_{2} = - 13;\]
\[d = a_{2} - a_{1} = - 13 + 16 = 3.\]
\[S_{n} = \frac{2a_{1} + d(n - 1)}{2} \cdot n =\]
\[= \frac{- 32 + 3 \cdot (n - 1)}{2} \cdot n.\]
\[S_{k + 1} = \frac{- 32 + 3 \cdot (n - 1)}{2} \cdot n =\]
\[= \frac{- 32 + 3 \cdot (k + 1 - 1)}{2} \cdot (k + 1) =\]
\[= \frac{- 32 + 3k}{2} \cdot (k + 1).\]