\[\left\{ \begin{matrix} 4x + a < 0 \\ 7 - 2x > 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} 4x < - a\ \ \ \\ - 2x > - 7 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} x < - \frac{1}{4}a \\ x < \frac{2}{7}\text{\ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[При\ a > 0:\]
\[система\ имеет\ решение.\]
\[При\ a < 0:\]
\[система\ имеет\ решение.\]
\[Ответ:имеет\ решение\ при\ любом\ a.\]
\[0,416 = \frac{416}{1000} = \frac{2496}{6000};\ \ \ \]
\[\frac{5}{12} = \frac{2500}{6000};\]
\[\frac{2496}{6000} < \frac{2500}{6000};\]
\[0,416 < \frac{5}{12}.\]
\[\frac{1}{6} < x < \frac{1}{2}\]
\[\frac{1}{6} = 0,1(6);\ \frac{1}{5} = 0,2.\]
\[x = 0,1777.\]
\[Ответ:0,1777.\]
\[- 10 \in R\]
\[199 \in Z\]
\[\pi
otin Q\]
\[a + 3 \leq b + 3\]
\[a \leq b.\]
\[Верные\ равенства:\]
\[a \leq b\]
\[- a + 1 \geq - b + 1\]
\[Неверные\ равенства:\]
\[\frac{1}{3}a \geq \frac{1}{3}\text{b.}\]
\[3 - 4x \leq 19\]
\[- 4x \leq 16\]
\[x \geq - 4.\]
\[25 - x > 2 - 3 \cdot (x - 6)\]
\[25 - x > 2 - 3x + 18\]
\[- x + 3x > 20 - 25\]
\[2x > - 5\]
\[x > - 2,5.\]
\[\left\{ \begin{matrix} 15 - 2x < 8x\ \ \ \ \ \\ 2 + 5x > 3x - 2 \\ \end{matrix} \right.\ \text{\ \ \ \ }\left\{ \begin{matrix} - 2x - 8x < - 15\ \ \\ 5x - 3x > - 2 - 2 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} - 10x < - 15 \\ 2x > - 4\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x > 1,5 \\ x > - 2 \\ \end{matrix} \right.\ \]
\[Ответ:x > 1,5.\]
\[l = (20 \pm 0,05)\ м.\]
\[19,95 \leq l \leq 20,05\]
\[Длина\ 20,1\ м\ не\ удовлетворяет\ условию.\]
\[Ответ:нет.\]
\[\frac{6 - 15x}{5} - \frac{6 - 5x}{2} < 0\]
\[2 \cdot (6 - 15x) - 5 \cdot (6 - 5x) < 0\]
\[12 - 30x - 30 + 25x < 0\]
\[- 5x - 18 < 0\]
\[- 5x < 18.\]
\[x > - \frac{18}{5}\]
\[x > - 3,6.\]
\[x_{наим} = - 3.\]
\[Ответ:\ - 3.\]
\[S = a \cdot b;\ \ a = 3\ см;\ \ b = \sqrt{2}\ см.\]
\[S = 3 \cdot \sqrt{2}.\]
\[1,4 < \sqrt{2} < 1,5\]
\[4,2 < S < 4,5.\]
\[a^{2} + b^{2} \geq \frac{(a + b)^{2}}{2}\]
\[2 \cdot \left( a^{2} + b^{2} \right) \geq (a + b)^{2}\]
\[2a^{2} + 2b^{2} \geq a^{2} + 2ab + b^{2}\]
\[a^{2} - 2ab + b^{2} \geq 0\]
\[(a - b)^{2} \geq 0\ при\ любых\ значениях\ \]
\[переменной.\]
\[Что\ и\ требовалось\ доказать.\]