\[c_{n} = n^{2} - 25\frac{1}{3}n + 12 =\]
\[= \left( n - \frac{38}{3} \right)^{2} - 160\frac{4}{9} + 12 =\]
\[= \left( n - 12\frac{2}{3} \right)^{2} - 148\frac{4}{9} \Longrightarrow\]
\[\Longrightarrow n = 12\ \ или\ \ n = 13.\]
\[c_{12} = \left( 12 - 12\frac{2}{3} \right)^{2} - 148\frac{4}{9} =\]
\[= \left( - \frac{2}{3} \right)^{2} - 148\frac{4}{9} = \frac{4}{9} - 148\frac{4}{9} =\]
\[= - 148.\]
\[c_{13} = \left( 13 - 12\frac{2}{3} \right)^{2} - 148\frac{4}{9} =\]
\[= \left( \frac{1}{3} \right)^{2} - 148\frac{4}{9} = \frac{1}{9} - 148\frac{4}{9} =\]
\[= - 148\frac{1}{3}\]
\[- 148\frac{1}{3} < - 148 \Longrightarrow\]
\[\Longrightarrow c_{13} - наименьший.\]
\[Ответ:13.\]