\[c_{n} = - n^{2} + 35\frac{1}{3}n + 31 =\]
\[= - \left( n^{2} - 35\frac{1}{3}n - 31 \right) =\]
\[= - \left( \left( n - 17\frac{2}{3} \right)^{2} - 343\frac{1}{9} \right) =\]
\[= 343\frac{1}{9} - \left( n - 17\frac{2}{3} \right)^{2} \Longrightarrow\]
\[\Longrightarrow n = 17\ или\ n = 18.\]
\[c_{17} = 343\frac{1}{9} - \left( 17 - 17\frac{2}{3} \right)^{2} =\]
\[= 343\frac{1}{9} - \left( \frac{2}{3} \right)^{2} = 343\frac{1}{9} - \frac{4}{9} =\]
\[= 342\frac{2}{3}\]
\[c_{18} = 343\frac{1}{9} - \left( 18 - 17\frac{2}{3} \right)^{2} =\]
\[= 343\frac{1}{9} - \left( \frac{1}{3} \right)^{2} =\]
\[= 343\frac{1}{9} - \frac{1}{9} = 343\]
\[343 > 342\frac{2}{3} \Longrightarrow\]
\[\Longrightarrow c_{18} - наибольший.\]
\[Ответ:18.\]