Вопрос:

Не выполняя построения, найдите координаты точек пересечения окружности х^2+у^2=5 и прямой х+3у=7.

Ответ:

\[x^{2} + y^{2} = 5;\ \ \ \ x + 3y = 7.\]

\[Запишем\ систему:\]

\[\left\{ \begin{matrix} x^{2} + y^{2} = 5 \\ x = 7 - 3y\ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} (7 - 3y)^{2} + y^{2} = 5 \\ x = 7 - 3y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \ \]

\[49 - 42y + 9y^{2} + y² - 5 = 0\]

\[10y^{2} - 42y + 44 = 0\ \ \ \ \ \ |\ :2\]

\[5y^{2} - 21y + 22 = 0\]

\[D = 441 - 440 = 1\]

\[y_{1} = \frac{21 - 1}{10} = 2;\ \ \ y_{2} = \frac{21 + 1}{10} = 2,2.\]

\[\left\{ \begin{matrix} y = 2 \\ x = 1 \\ \end{matrix} \right.\ \ \ \ \ \ и\ \ \ \ \ \ \left\{ \begin{matrix} y = 2,2 \\ x = 0,4 \\ \end{matrix} \right.\ \]

\[Ответ:графики\ пересекаются\ в\ \]

\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ точках\ (1;2)\ и\ (0,4;2,2).\]

Похожие