\[f(x) = \frac{\sqrt{x + 2}}{\sqrt{x + 5}} + \frac{2x - 3}{x^{2} - x - 12},\ \ \]
\[\left\{ \begin{matrix}
x + 2 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \\
x + 5 > 0\ \ \ \ \ \ \ \ \ \ \ \\
x^{2} - x - 12
eq 0 \\
\end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix}
x \geq - 2 \\
x > - 5 \\
x
eq 4\ \ \ \\
x
eq - 3 \\
\end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix}
x \geq - 2 \\
x
eq 4\ \ \ \\
x
eq - 3 \\
\end{matrix} \right.\ \]
\[x_{1} + x_{2} = 1,\ \ x_{1} \cdot x_{2} = - 12\]
\[D(f) = \lbrack - 2;4) \cup (4; + \infty)\text{.\ \ }\]