Вопрос:

Найдите область определения функции: f(x)=корень из (x+2)/корень из (x+5)+(2x-3)/(x^2-x-12).

Ответ:

\[f(x) = \frac{\sqrt{x + 2}}{\sqrt{x + 5}} + \frac{2x - 3}{x^{2} - x - 12},\ \ \]

\[\left\{ \begin{matrix} x + 2 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \\ x + 5 > 0\ \ \ \ \ \ \ \ \ \ \ \\ x^{2} - x - 12 \neq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x \geq - 2 \\ x > - 5 \\ x \neq 4\ \ \ \\ x \neq - 3 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x \geq - 2 \\ x \neq 4\ \ \ \\ x \neq - 3 \\ \end{matrix} \right.\ \]

\[x_{1} + x_{2} = 1,\ \ x_{1} \cdot x_{2} = - 12\]

\[D(f) = \lbrack - 2;4) \cup (4; + \infty)\text{.\ \ }\]

Похожие