\[\frac{7}{x - 3} + 1 = \frac{18}{x² - 6x + 9}\]
\[ОДЗ:\ \ x - 3 \neq 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \Longrightarrow x \neq 3\]
\[\frac{7}{x - 3} - \frac{18}{(x - 3)^{2}} = - 1\]
\[\frac{7 \cdot (x - 3) - 18}{(x - 3)²} = - 1\]
\[7x - 21 - 18 = - x^{2} + 6x - 9\]
\[x^{2} + 7x - 6x - 39 + 9 = 0\]
\[x^{2} + x - 30 = 0\]
\[x_{1} + x_{2} = - 1\]
\[x_{1} \cdot x_{2} = - 30 \Longrightarrow x_{1} = - 6;\ \ \]
\[x_{2} = 5\]
\[Ответ:x = - 6\ \ и\ \ x = 5.\]