\[S\ (км)\] | \[t\ (ч)\] | \[V\ (\frac{км}{ч)}\] | |
---|---|---|---|
\[A\ в\ B\] | \[27\] | \[\frac{27}{x}\] | \[x\] |
\[B\ в\ A\] | \[20\] | \[\frac{20}{x - 3}на\ 10\ мин\ м \nwarrow\] | \[x - 3\] |
\[10\ мин = \frac{1}{6}\ ч.\]
\[Составим\ уравнение:\]
\[\frac{27}{x} - \frac{20}{x - 3} = \frac{1}{6}\]
\[\frac{27 \cdot (x - 3) - 20x}{x(x - 3)} = \frac{1}{6}\]
\[\frac{27x - 81 - 20x}{x(x - 3)} = \frac{1}{6}\]
\[6 \cdot 7x - 81 \cdot 6 = x^{2} - 3x\]
\[x^{2} - 45x + 486 = 0\]
\[D = b62 - 4ac = 2025 - 4 \cdot 486 =\]
\[= 2025 - 1944 = 81\]
\[x_{1} = \frac{45 + 9}{2} = \frac{54}{2} = 27\]
\[x_{2} = \frac{45 - 9}{2} = \frac{36}{2} = 18\]
\[Ответ:либо\ со\ V =\]
\[= 27\frac{км}{ч;\ \ \ \ \ либо\ \ V = 18\frac{км}{ч}}.\]
\[\frac{3x + 4}{x^{2} - 16} = \frac{x^{2}}{x^{2} - 16}\]
\[\frac{3x + 4}{x^{2} - 16}\mathbf{-}\frac{x^{2}}{x^{2} - 16} = 0\]
\[\frac{3x + 4 - x^{2}}{x^{2} - 16} = 0;\ \ \ \ x \neq \pm 4\]
\[x^{2} - 3x - 4 = 0\]
\[x_{1} + x_{2} = 3;\ \ \]
\[x_{1} = 4\ (не\ подходит);\ \ x_{2} = - 1.\]
\[Ответ:x = - 1.\]