Дано:
(R = 15) см = 0.15 м
(F = 15) мН = 0.015 Н
\(\varepsilon_0 = 8,85 \cdot 10^{-12}\) Кл²/(м² · Н)
(k = 9 \cdot 10^9 \frac{Н \cdot м^2}{Кл^2}\)
Найти: q
Решение:
Сила Кулона описывается формулой:
\[F = k \frac{q_1 q_2}{R^2}\]
Поскольку заряды одинаковые, (q_1 = q_2 = q), тогда:
\[F = k \frac{q^2}{R^2}\]
Выразим (q^2):
\[q^2 = \frac{F R^2}{k}\]
Теперь найдем (q):
\[q = \sqrt{\frac{F R^2}{k}}\]
Подставим значения:
\[q = \sqrt{\frac{0.015 \cdot (0.15)^2}{9 \cdot 10^9}} = \sqrt{\frac{0.015 \cdot 0.0225}{9 \cdot 10^9}} = \sqrt{\frac{0.0003375}{9 \cdot 10^9}} = \sqrt{3.75 \cdot 10^{-14}} = 1.936 \cdot 10^{-7} Кл\]
Переведем в микрокулоны (мкКл):
\[q = 1.936 \cdot 10^{-7} Кл = 0.1936 \cdot 10^{-6} Кл = 0.1936 мкКл \approx 0.19 мкКл\]
Ответ: 0.19 мкКл
Убрать каракули