\[\left( \frac{3b}{b - 2} - \frac{6b}{b^{2} - 4b + 4} \right)\ :\frac{b - 4}{b^{2} - 4} - \frac{2b^{2} + 8b}{b - 2} = b\]
\[Преобразуем\ левую\ часть\ равенства:\]
\[1)\ \frac{3b^{\backslash b - 2}}{b - 2} - \frac{6b}{(b - 2)^{2}} = \frac{3b^{2} - 6b - 6b}{(b - 2)^{2}} =\]
\[= \frac{3b^{2} - 12b}{(b - 2)^{2}} = \frac{3b(b - 4)}{(b - 2)^{2}}\]
\[2)\ \frac{3b(b - 4)}{(b - 2)^{2}} \cdot \frac{b^{2} - 4}{b - 4} = \frac{3b(b - 2)(b + 2)}{(b - 2)^{2}} =\]
\[= \frac{3b(b + 2)}{b - 2}\]
\[3)\ \frac{3b(b + 2)}{b - 2} - \frac{2b^{2} + 8b}{b - 2} =\]
\[= \frac{3b^{2} + 6b - 2b^{2} - 8b}{b - 2} = \frac{b^{2} - 2b}{b - 2} =\]
\[= \frac{b(b - 2)}{b - 2} = b\]
\[b = b\]
\[Что\ и\ требовалось\ доказать.\]