\[\left( \frac{2a}{a + 3} - \frac{4a}{a^{2} + 6a + 9} \right)\ :\frac{a + 1}{a^{2} - 9\ } - \frac{a^{2} - 9a}{a + 3} = a\]
\[Преобразуем\ левую\ часть\ равенства:\]
\[1)\frac{2a^{\backslash a + 3}}{a + 3} - \frac{4a}{(a + 3)^{2}} = \frac{2a^{2} + 6a - 4a}{(a + 3)^{2}} =\]
\[= \frac{2a^{2} + 2a}{(a + 3)^{2}} = \frac{2a(a + 1)}{(a + 3)^{2}}\]
\[2)\ \frac{2a(a + 1)}{(a + 3)^{2}} \cdot \frac{a^{2} - 9}{a + 1} =\]
\[= \frac{2a(a - 3)(a + 3)}{(a + 3)^{2}} = \frac{2a(a - 3)}{a + 3}\]
\[3)\ \frac{2a(a - 3)}{a + 3} - \frac{a^{2} - 9a}{a + 3} =\]
\[= \frac{2a^{2} - 6a - a^{2} + 9a}{a + 3} =\]
\[= \frac{a^{2} + 3a}{a + 3} = \frac{a(a + 3)}{a + 3} = a\]
\[a = a\]
\[Что\ и\ требовалось\ доказать.\]