\[\left( \frac{2a}{a^{2} - 1} + \frac{a - 1}{2a + 2} \right) \cdot \frac{2a}{a + 1} + \frac{1}{1 - a} = 1\]
\[1)\frac{2a^{\backslash 2}}{(a - 1)(a + 1)} + \frac{a - 1^{\backslash a - 1}}{2(a + 1)} =\]
\[= \frac{4a + a^{2} - 2a + 1}{2(a^{2} - 1)} = \frac{a^{2} + 2a + 1}{2(a^{2} - 1)} =\]
\[= \frac{(a + 1)²}{2(a - 1)(a + 1)} = \frac{a + 1}{2(a - 1)}\]
\[2)\ \frac{a + 1}{2(a - 1)} \cdot \frac{2a}{a + 1} = \frac{(a + 1) \cdot 2a}{2(a - 1)(a + 1)} =\]
\[= \frac{a}{a - 1}\]
\[3)\frac{a}{a - 1} - \frac{1}{a - 1} = \frac{a - 1}{a - 1} = 1\ \]
\[Что\ и\ требовалось\ доказать.\]