\[f(x) = \frac{5}{x + 2};\ \ \ \ \]
\[убывает\ на\ ( - 2; + \infty)\]
\[Пусть\ \ - 2 < x_{1} < x_{2};\ \ тогда:\]
\[\frac{5}{x_{2} + 2} - \frac{5}{x_{1} + 2} =\]
\[= \frac{5x_{1} + 10 - 5x_{2} - 10}{\left( x_{2} + 2 \right)\left( x_{1} + 2 \right)} =\]
\[= \frac{5 \cdot \left( x_{1} - x_{2} \right)}{\left( x_{2} + 2 \right)\left( x_{1} + 2 \right)} < 0\]
\[то\ есть\ \ x_{1} < x_{2};\ \ \]
\[f\left( x_{2} \right) < f\left( x_{1} \right) \Longrightarrow значит,\ \]
\[убывает.\]