\[x^{2} - (a - 4)x - 4a \geq 0\]
\[D = a^{2} - 8a + 16 + 16a =\]
\[= a^{2} + 8a + 16 =\]
\[= (a + 4)^{2} \geq 0 - при\]
\[любом\ значении\ \]
\[переменной\ a.\]
\[x_{1} = \frac{(a - 4) - (a + 4)}{2} =\]
\[= - \frac{8}{2} = - 4;\]
\[x_{2} = \frac{(a - 4) + (a + 4)}{2} =\]
\[= \frac{2a}{2} = a.\]
\[\left( x - x_{1} \right)\left( x - x_{2} \right) \geq 0\]
\[x \leq x_{1};\ \ \ x \geq x_{2}.\]
\[При\ a < - 4:\]
\[x \leq - a;\ \ \ x \geq - 4.\]
\[При\ a = - 4:\]
\[x \in ( - \infty; + \infty).\]
\[При\ a > - 4:\]
\[x \leq - 4;\ \ \ x \geq a.\]