\[\frac{2}{9},\frac{2}{3},\ 2,\ \ldots\]
\[a_{n} = 162;\]
\[q = \frac{2 \cdot 3}{2} = 3.\]
\[a_{n} = a_{1} \cdot q^{n - 1} = 162\]
\[3^{n - 1} = \frac{162 \cdot 9}{2}\]
\[3^{n - 1} = 81 \cdot 9\]
\[3^{n - 1} = 9^{3}\]
\[3^{n - 1} = 3^{6}\]
\[n - 1 = 6\]
\[n = 7.\]
\[Ответ:n = 7.\]