a) $(5a - 10)^2 - (3a - 8)^2 + 132a = (25a^2 - 100a + 100) - (9a^2 - 48a + 64) + 132a = 25a^2 - 100a + 100 - 9a^2 + 48a - 64 + 132a = 16a^2 + 80a + 36$. При $a = -6$, $16(-6)^2 + 80(-6) + 36 = 16(36) - 480 + 36 = 576 - 480 + 36 = 132$.
б) $(3p - 8)^2 + (4p + 6)^2 + 100p = (9p^2 - 48p + 64) + (16p^2 + 48p + 36) + 100p = 9p^2 - 48p + 64 + 16p^2 + 48p + 36 + 100p = 25p^2 + 100p + 100$. При $p = -2$, $25(-2)^2 + 100(-2) + 100 = 25(4) - 200 + 100 = 100 - 200 + 100 = 0$.
в) $(5b - 3)^2 + (12b - 4)^2 - 4b = (25b^2 - 30b + 9) + (144b^2 - 96b + 16) - 4b = 25b^2 - 30b + 9 + 144b^2 - 96b + 16 - 4b = 169b^2 - 130b + 25$. При $b = -1$, $169(-1)^2 - 130(-1) + 25 = 169 + 130 + 25 = 324$.
г) $(13 - 5m)^2 - (12 - 4m)^2 + 4m = (169 - 130m + 25m^2) - (144 - 96m + 16m^2) + 4m = 169 - 130m + 25m^2 - 144 + 96m - 16m^2 + 4m = 9m^2 - 30m + 25$. При $m = -\frac{2}{3}$, $9(-\frac{2}{3})^2 - 30(-\frac{2}{3}) + 25 = 9(\frac{4}{9}) + 20 + 25 = 4 + 20 + 25 = 49$.
Убрать каракули