\[\boxed{\text{5.\ 122}}\]
\[\textbf{а)} - 30 \cdot (x - 21) = - 180\]
\[x - 21 = - 180\ :( - 30)\]
\[x - 21 = 6\]
\[x = 6 + 21\]
\[x = 27.\]
\[\textbf{б)}\ (15 - 9x) \cdot 4 = 204\]
\[15 - 9x = 204\ :4\]
\[15 - 9x = 51\]
\[- 9x = 51 - 15\]
\[- 9x = 36\]
\[x = 36\ :( - 9)\]
\[x = - 4.\]
\[\textbf{в)}\ \frac{9}{14}x - \frac{5}{14} = \frac{1}{7}\ \ \ \ \ | \cdot 14\]
\[9x - 5 = 2\]
\[9x = 2 + 5\]
\[9x = 7\]
\[x = \frac{7}{9}.\]
\[\textbf{г)}\ (3,6 - 0,2x) \cdot 4,9 = 9,8\]
\[3,6 - 0,2x = 9,8\ :4,9\]
\[3,6 - 0,2x = 2\]
\[- 0,2x = 2 - 3,6\]
\[- 0,2x = - 1,6\]
\[x = - 1,6\ :( - 0,2)\]
\[x = 8.\]
\[\textbf{д)}\ (7x - 3,4) \cdot 9 = 13,5\]
\[7x - 3,4 = 13,5\ :9\]
\[7x - 3,4 = 1,5\]
\[7x = 1,5 + 3,4\]
\[7x = 4,9\]
\[x = 4,9\ :7\]
\[x = 0,7.\]
\[\textbf{е)}\ \frac{1}{3}x + \frac{5}{6}x = 3,5\ \ \ \ \ \ | \cdot 6\]
\[2x + 5x = 21\]
\[7x = 21\]
\[x = 21\ :7\]
\[x = 3.\ \]