\[\boxed{\mathbf{2.}\mathbf{314}\mathbf{.\ ОК\ ГДЗ - домашка\ на\ }5}\]
Пояснение.
Чтобы решить уравнение, буквенную часть оставляем слева, числа переносим вправо, меняя знаки на противоположные.
Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
Решение.
\[\textbf{а)}\ 11,4b - (2,7b + 3,2b) + 2,35 = 6,2\]
\[11,4b - 5,9b = 6,2 - 2,35\]
\[5,5b = 3,85\]
\[b = 3,85\ :5,5 = 385\ :550\]
\[b = 0,7.\]
\[\textbf{б)}\ 15d - (12,1d - 0,7d) + 5,6 =\]
\[= 20\]
\[15d - 11,4d = 20 - 5,6\]
\[3,6d = 14,4\]
\[d = 14,4\ :3,6 = 144\ :36\]
\[d = 4.\]
\[\textbf{в)}\ 3x + \frac{1}{6} - \left( 3\frac{1}{2}x - 1\frac{1}{4}x \right) = 4\frac{2}{3}\ \]
\[3x - \left( 3\frac{2}{4}x - 1\frac{1}{4}x \right) = 4\frac{2}{3} - \frac{1}{6}\]
\[3x - 2\frac{1}{4}x = 4\frac{4}{6} - \frac{1}{6}\]
\[\frac{3}{4}x = 4\frac{3}{6}\]
\[\frac{3}{4}x = \frac{27}{6}\]
\[x = \frac{27}{6}\ :\frac{3}{4} = \frac{27}{6} \cdot \frac{4}{3} = 3 \cdot 2\]
\[x = 6.\]