\[Страница\ 75.\]
\[14.\ Применение\ \]
\[распределительного\ свойства\ \]
\[умножения\]
\[\boxed{\mathbf{1.}}\]
\[\textbf{а)}\ \left( 10 - \frac{1}{3} \right) \cdot 3 = 10 \cdot 3 - \frac{1}{3} \cdot 3 =\]
\[= 30 - 1 = 29\]
\[\textbf{б)}\ \left( \frac{1}{5} + \frac{1}{3} \right) \cdot 15 =\]
\[= \frac{1}{5} \cdot 15 + \frac{1}{3} \cdot 15 = 3 + 5 = 8\]
\[\textbf{в)}\ \left( \frac{7}{8} - \frac{1}{6} \right) \cdot 24 =\]
\[= \frac{7}{8} \cdot 24 - \frac{1}{6} \cdot 24 = 21 - 4 = 17\]
\[\textbf{г)}\ (3 + 9) \cdot \frac{1}{3} = 3 \cdot \frac{1}{3} + 9 \cdot \frac{1}{3} =\]
\[= 1 + 3 = 4\]
\[\textbf{д)}\ \left( 7 - \frac{3}{4} \right) \cdot \frac{1}{3} = 7 \cdot \frac{1}{3} - \frac{3}{4} \cdot \frac{1}{3} =\]
\[= \frac{7}{3} - \frac{1}{4} = \frac{25}{12} = 2\frac{1}{12}\]
\[\textbf{е)}\ \left( \frac{1}{7} + 2 \right) \cdot \frac{7}{9} = \frac{1}{7} \cdot \frac{7}{9} + 2 \cdot \frac{7}{9} =\]
\[= \frac{1}{9} + \frac{14}{9} = \frac{15}{9} = 1\frac{2}{3}\ \]
\[\boxed{\mathbf{2.}}\]
\[\textbf{а)}\ 7\frac{1}{4} \cdot 8 = \frac{29}{4} \cdot 8 = 58\]
\[5\frac{2}{3} \cdot 6 = \frac{17}{3} \cdot 6 = 34\]
\[4 \cdot 1\frac{1}{2} = 4 \cdot \frac{3}{2} = 6\]
\[70 \cdot 2\frac{1}{7} = 70 \cdot \frac{15}{7} = 150\]
\[\textbf{б)}\ 35\frac{2}{5} \cdot 5 = 177\]
\[9 \cdot 1\frac{1}{18} = 9\frac{1}{2}\]
\[2\frac{1}{3} \cdot 2 = 4\frac{2}{3}\]
\[18\frac{1}{4} \cdot \frac{1}{9} = 2\frac{1}{36}\]
\[\textbf{в)}\ 12\frac{1}{5} \cdot \frac{1}{12} = 1\frac{1}{60}\]
\[80\frac{1}{5} \cdot \frac{1}{20} = 4\frac{1}{100}\]
\[16\frac{1}{8} \cdot \frac{1}{4} = 4\frac{1}{32}\]
\[32\frac{1}{9} \cdot \frac{1}{8} = 4\frac{1}{72}\]