\[\boxed{\text{5.\ 101}}\]
\[\textbf{а)}\ \frac{x - 4}{8} = \frac{7}{4}\]
\[4 \cdot (x - 4) = 7 \cdot 8\]
\[4x - 16 = 56\]
\[4x = 56 + 16\]
\[4x = 72\]
\[x = 72\ :4\]
\[x = 18.\]
\[\textbf{б)}\ \frac{5}{3x + 2} = \frac{2,5}{27,5}\]
\[(3x + 2) \cdot 2,5 = 5 \cdot 27,5\]
\[3x + 2 = \frac{5 \cdot 27,5}{2,5}\]
\[3x + 2 = 20 \cdot 27,5\]
\[3x + 2 = 55\]
\[3x = 55 - 2\]
\[3x = 53\]
\[x = \frac{53}{3}\]
\[x = 17\frac{2}{3}.\]
\[\textbf{в)}\ \frac{x + 6}{4} = \frac{2x - 15}{7}\]
\[7 \cdot (x + 6) = 4 \cdot (2x - 15)\]
\[7x + 42 = 8x - 60\]
\[7x - 8x = - 60 - 42\]
\[- x = - 102\]
\[x = 102.\]
\[\textbf{г)}\ \frac{0,3}{x + 5} = \frac{0,8}{x - 9}\ \ \ \ \ \ \ | \cdot 10\]
\[\frac{3}{x + 5} = \frac{8}{x - 9}\]
\[8 \cdot (x + 5) = 3 \cdot (x - 9)\]
\[8x + 40 = 3x - 27\]
\[8x - 3x = - 27 - 40\]
\[5x = - 67\]
\[x = - 67\ :5\]
\[x = - 13,4.\]