\[\boxed{\mathbf{3.45}}\]
Пояснение.
Решение.
\[Для\ решения\ уравнений\ \]
\[воспользуемся\ основным\ \]
\[свойством\ пропорции.\]
\[\textbf{а)}\ \frac{13,7}{4} = \frac{9t}{3,6}\]
\[t = \frac{13,7 \cdot 3,6}{4 \cdot 9} = 13,7 \cdot 0,1\]
\[t = 1,37.\]
\[\textbf{б)}\ \frac{1}{3}a\ :6 = 14\ :0,7\]
\[\frac{1}{3}a = \frac{14 \cdot 6}{0,7}\]
\[\frac{1}{3}a = 120\]
\[a = 120 \cdot 3\]
\[a = 360.\]
\[\textbf{в)}\ \frac{1,5}{a + 0,03} = \frac{6,3}{0,21}\]
\[a + 0,03 = \frac{1,5 \cdot 0,21}{6,3}\]
\[a + 0,03 = 0,05\]
\[a = 0,05 - 0,03\]
\[a = 0,02.\]
\[\textbf{г)}\ 4\frac{4}{5}\ :2,5 = 1\frac{1}{2}\ :(0,4 + b)\]
\[0,4 + b = \frac{25}{10} \cdot \frac{3}{2}\ :\frac{24}{5}\]
\[0,4 + b = \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{5}{24}\]
\[0,4 + b = \frac{75}{96}\]
\[b = \frac{75}{96} - \frac{2}{5} = \frac{375 - 192}{480} = \frac{183}{480}\]
\[b = \frac{61}{160}.\]