\[\boxed{\mathbf{3.161}}\]
Пояснение.
Решение.
\[\textbf{а)}\ 3\frac{2}{3}\ :a = 4\frac{8}{9}\ :1\frac{5}{7}\]
\[4\frac{8}{9}a = 3\frac{2}{3} \cdot 1\frac{5}{7}\]
\[\frac{44}{9}a = \frac{11}{3} \cdot \frac{12}{7}\]
\[a = \frac{44}{7} \cdot \frac{9}{44}\]
\[a = \frac{9}{7} = 1\frac{2}{7}.\]
\[\textbf{б)}\ 1\frac{7}{8}\ :2\frac{1}{3} = 3\frac{3}{4}\ :b\]
\[1\frac{7}{8}b = 2\frac{1}{3} \cdot 3\frac{3}{4}\]
\[\frac{15}{8}b = \frac{7}{3} \cdot \frac{15}{4}\]
\[b = \frac{7}{3} \cdot \frac{15}{4} \cdot \frac{8}{15} = \frac{7 \cdot 2}{3} = \frac{14}{3}\]
\[b = 4\frac{2}{3}.\]
\[\textbf{в)}\ 8\frac{1}{4}\ :c = 13\frac{3}{4}\ :2\frac{1}{3}\]
\[13\frac{3}{4}c = 8\frac{1}{4} \cdot 2\frac{1}{3}\]
\[\frac{55}{4}c = \frac{33}{4} \cdot \frac{7}{3}\]
\[c = \frac{77}{4} \cdot \frac{4}{55} = \frac{7}{5}\]
\[c = 1,4.\]
\[\textbf{г)}\ 5\frac{2}{3}\ :2\frac{5}{6} = 2\frac{1}{7}\ :d\]
\[5\frac{2}{3}d = 2\frac{5}{6} \cdot 2\frac{1}{7}\]
\[\frac{17}{3}d = \frac{17}{6} \cdot \frac{15}{7}\ \]
\[d = \frac{17}{2} \cdot \frac{5}{7} \cdot \frac{3}{17} = \frac{15}{14}\]
\[d = 1\frac{1}{14}.\]