\[\boxed{\mathbf{2.}\mathbf{388}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \left( \frac{3}{4} - \frac{3}{5}y \right) \cdot 20 = 3\]
\[\frac{3}{4} \cdot 20 - \frac{3}{5}y \cdot 20 = 3\]
\[15 - 12y = 3\]
\[12y = 15 - 3\]
\[12y = 12\]
\[y = 1.\]
\[Ответ:y = 1.\]
\[\textbf{б)}\ \left( \frac{6}{7}x - \frac{1}{3} \right) \cdot 21 = 32\]
\[\frac{6}{7}x \cdot 21 - \frac{1}{3} \cdot 21 = 32\]
\[18x - 7 = 32\]
\[18x = 32 + 7\]
\[18x = 39\]
\[x = \frac{39}{18} = 2\frac{3}{18}\]
\[x = 2\frac{1}{6}\]
\[Ответ:x = 2\frac{1}{6}.\]
\[\textbf{в)}\ \frac{5}{7}x + \frac{2}{7}x = 23\]
\[\left( \frac{5}{7} + \frac{2}{7} \right)x = 23\]
\[\frac{7}{7}x = 23\]
\[x = 23\]
\[Ответ:x = 23.\]
\[\textbf{г)}\ \frac{11}{15}n + \frac{3^{\backslash 3}}{5}n - \frac{1^{\backslash 5}}{3}n = 9\]
\[\frac{11}{15}n + \frac{9}{15}n - \frac{5}{15}n = 9\]
\[\left( \frac{11}{15} + \frac{9}{15} - \frac{5}{15} \right)n = 9\]
\[\frac{15}{15}n = 9\]
\[n = 9\]
\[Ответ:n = 9.\]