\[\boxed{\mathbf{2.}\mathbf{383}}\]
Пояснение.
Решение.
\[\textbf{а)}\ 3\frac{1}{9} \cdot 5 = \left( 3 + \frac{1}{9} \right) \cdot 5 =\]
\[= 3 \cdot 5 + \frac{1}{9} \cdot 5 = 15 + \frac{5}{9} = 15\frac{5}{9}\]
\[\textbf{б)}\ 8\frac{2}{9} \cdot 4 = \left( 8 + \frac{2}{9} \right) \cdot 4 =\]
\[= 8 \cdot 4 + \frac{2}{9} \cdot 4 = 32 + \frac{8}{9} = 32\frac{8}{9}\]
\[\textbf{в)}\ 4 \cdot 2\frac{1}{5} = 4 \cdot \left( 2 + \frac{1}{5} \right) =\]
\[= 4 \cdot 2 + 4 \cdot \frac{1}{5} = 8 + \frac{4}{5} = 8\frac{4}{5}\]
\[\textbf{г)}\ 8 \cdot 2\frac{1}{11} = 8 \cdot \left( 2 + \frac{1}{11} \right) =\]
\[= 8 \cdot 2 + 8 \cdot \frac{1}{11} = 16 + \frac{8}{11} =\]
\[= 16\frac{8}{11}\]
\[\textbf{д)}\ 5\frac{1}{5} \cdot 5 = \left( 5 + \frac{1}{5} \right) \cdot 5 =\]
\[= 5 \cdot 5 + \frac{1}{5} \cdot 5 = 25 + 1 = 26\]
\[\textbf{е)}\ 3\frac{3}{7} \cdot 7 = \left( 3 + \frac{3}{7} \right) \cdot 7 =\]
\[= 3 \cdot 7 + \frac{3}{7} \cdot 7 = 21 + 3 = 24\]
\[\textbf{ж)}\ 6 \cdot 10\frac{1}{6} = 6 \cdot \left( 10 + \frac{1}{6} \right) =\]
\[= 6 \cdot 10 + 6 \cdot \frac{1}{6} = 60 + 1 = 61\]
\[\textbf{з)}\ 11\frac{1}{3} \cdot 3 = \left( 11 + \frac{1}{3} \right) \cdot 3 =\]
\[= 11 \cdot 3 + \frac{1}{3} \cdot 3 = 33 + 1 = 34\]
\[\textbf{и)}\ 23\frac{5}{8} \cdot 8 = \left( 23 + \frac{5}{8} \right) \cdot 8 =\]
\[= 23 \cdot 8 + \frac{5}{8} \cdot 8 = 184 + 5 =\]
\[= 189\]
\[к)\ 11\frac{7}{15} \cdot 15 = \left( 11 + \frac{7}{15} \right) \cdot 15 =\]
\[= 11 \cdot 15 + \frac{7}{15} \cdot 15 = 165 + 7 =\]
\[= 172\]