\[\boxed{\mathbf{2.}\mathbf{196}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{2^{\backslash 7}}{3} = \frac{14}{21} > \frac{8}{21}\ \]
\[\textbf{б)}\ \frac{4}{15} < \frac{2^{\backslash 3}}{5} = \frac{6}{15}\]
\[\textbf{в)}\ \frac{3^{\backslash 5}}{8} = \frac{15}{40} < \frac{17}{40}\]
\[\textbf{г)}\ \frac{5^{\backslash 6}}{6} = \frac{30}{36} < \frac{31}{36}\]
\[\textbf{д)}\ \frac{1^{\backslash 7}}{6} = \frac{7}{42} < \frac{4^{\backslash 2}}{21} = \frac{8}{42}\]
\[\textbf{е)}\ \frac{13}{18} = \frac{65}{90} < \frac{11}{15} = \frac{66}{90}\]
\[\textbf{ж)}\ \frac{17^{\backslash 33}}{125} = \frac{17 \cdot 33}{4125} =\]
\[= \frac{561}{4125} < \frac{23^{\backslash 31}}{165} = \frac{23 \cdot 31}{4125} =\]
\[= \frac{713}{4125}\]
\[\textbf{з)}\ \frac{19^{\backslash 16}}{77} = \frac{19 \cdot 16}{1232} =\]
\[= \frac{304}{1232} > \frac{43^{\backslash 7}}{176} = \frac{43 \cdot 7}{1232} = \frac{301}{1232}\]