\[\boxed{\mathbf{2.}\mathbf{168}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{1^{\backslash 4}}{6} + \frac{5^{\backslash 3}}{8} = \frac{4}{24} + \frac{15}{24} = \frac{19}{24}\]
\[\textbf{б)}\ \frac{7^{\backslash 7}}{8} + \frac{5^{\backslash 4}}{14} = \frac{49}{56} + \frac{20}{56} = \frac{69}{56} =\]
\[= 1\frac{13}{56}\]
\[\textbf{в)}\ \frac{7^{\backslash 5}}{10} + \frac{3^{\backslash 2}}{25} = \frac{35}{50} + \frac{6}{50} = \frac{41}{50}\]
\[\textbf{г)}\ \frac{27^{\backslash 3}}{70} + \frac{16^{\backslash 2}}{105} = \frac{81}{210} + \frac{32}{210} =\]
\[= \frac{113}{210}\]
\[\textbf{д)}\ \frac{11^{\backslash 9}}{18} + \frac{1^{\backslash 2}}{81} = \frac{99}{162} + \frac{2}{162} =\]
\[= \frac{101}{162}\]
\[\textbf{е)}\ \frac{5^{\backslash 11}}{12} + \frac{3^{\backslash 3}}{44} = \frac{55}{132} + \frac{9}{132} =\]
\[= \frac{64}{132} = \frac{16}{33}\]
\[\textbf{ж)}\ \frac{15^{\backslash 3}}{56} + \frac{11^{\backslash 2}}{84} = \frac{45}{168} + \frac{22}{168} =\]
\[= \frac{67}{168}\]
\[\textbf{з)}\ \frac{11^{\backslash 7}}{21} + \frac{3^{\backslash 3}}{49} = \frac{77}{147} + \frac{9}{147} =\]
\[= \frac{86}{147}\]