\[\boxed{\mathbf{225\ (225)}\mathbf{.}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{4 \cdot 5}{25 \cdot 6} = \frac{2 \cdot 1}{5 \cdot 3} = \frac{2}{15}\]
\[2)\ \frac{8 \cdot 13}{39 \cdot 2} = \frac{4 \cdot 1}{3 \cdot 1} = \frac{4}{3} = 1\frac{1}{3}\]
\[3)\ \frac{3 \cdot 38}{19 \cdot 27} = \frac{1 \cdot 2}{1 \cdot 9} = \frac{2}{9}\]
\[4)\ \frac{2 \cdot 3 \cdot 4 \cdot 5}{4 \cdot 5 \cdot 6 \cdot 7} = \frac{1 \cdot 1 \cdot 1 \cdot 1}{1 \cdot 1 \cdot 1 \cdot 7} = \frac{1}{7}\]
\[5)\ \frac{6 \cdot 7 \cdot 8 \cdot 9 \cdot 10}{7 \cdot 9 \cdot 11 \cdot 12} =\]
\[= \frac{1 \cdot 1 \cdot 4 \cdot 1 \cdot 10}{1 \cdot 1 \cdot 11 \cdot 1} = \frac{40}{11} = 3\frac{7}{11}\]
\[6)\ \frac{3 \cdot 16 - 8 \cdot 3}{27} =\]
\[= \frac{3 \cdot (16 - 8)}{27} = \frac{1 \cdot 8}{9} = \frac{8}{9}\]
\[7)\ \frac{9 \cdot 13 + 9 \cdot 2}{54 \cdot 13} =\]
\[= \frac{9 \cdot (13 + 2)}{54 \cdot 13} = \frac{1 \cdot 15}{6 \cdot 13} =\]
\[= \frac{1 \cdot 5}{2 \cdot 13} = \frac{5}{26}\]
\[8)\ \frac{27 \cdot 15 - 7 \cdot 27}{9 \cdot 15 - 9 \cdot 11} =\]
\[= \frac{27 \cdot (15 - 7)}{9 \cdot (15 - 11)} = \frac{3 \cdot 8}{1 \cdot 4} =\]
\[= 3 \cdot 2 = 6\]
\[9)\ \frac{24 \cdot 2 + 6 \cdot 24}{60 \cdot 7 - 5 \cdot 60} =\]
\[= \frac{24 \cdot (2 + 6)}{60 \cdot (7 - 5)} = \frac{2 \cdot 8}{5 \cdot 2} = \frac{8}{5} =\]
\[= 1\frac{3}{5}\ \]
\[\boxed{\mathbf{225}\mathbf{.}}\]
\[\angle CMD = \angle BMD - \angle BMC =\]
\[= 65{^\circ} - 28{^\circ} = 37{^\circ}.\]
\[\angle AMD = \angle AMC + CMD =\]
\[= 72{^\circ} + 37{^\circ} = 109{^\circ}.\]
\[Ответ:109{^\circ}.\]