\[\boxed{\mathbf{1394}\mathbf{.}\mathbf{\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ Разделим\ число\ 96\ на\ три\]
\[\ части:\ x,\ y,\ z;\]
\[Выразим\ x:\]
\[\frac{x}{y} = \frac{3}{4}\]
\[4x = 3y\]
\[x = \frac{3}{4}\text{y.\ }\]
\[Выразим\ y:\]
\[\frac{y}{z} = \frac{4}{9}\]
\[4z = 9y\]
\[z = \frac{9}{4}\text{y.}\]
\[Получим:\]
\[\frac{3}{4}y + y + \frac{9}{4}y = 96\]
\[\frac{12}{4}y + y = 96\]
\[3y + y = 96\]
\[4y = 96\]
\[y = 24.\ \]
\[x = \frac{3}{4}y = \frac{3}{4} \cdot 24 = 3 \cdot 6 = 18.\]
\[z = \frac{9}{4}y = \frac{9}{4} \cdot 24 = 9 \cdot 6 = 54.\]
\[Ответ:18;\ 24;\ 54.\]
\[2)\ Разделим\ число\ 185\ на\]
\[\ три\ части\ x,\ y,\ z;\]
\[Выразим\ x:\]
\[\frac{x}{y} = \frac{3}{2}\]
\[2x = 3y\]
\[x = \frac{3}{2}\text{y.}\]
\[Выразим\ z:\]
\[\frac{y}{z} = \frac{2\frac{1}{2}}{3}\]
\[\frac{5}{2}z = 3y\]
\[z = 3y \cdot \frac{2}{5}\]
\[z = \frac{6}{5}\text{y.}\]
\[Получим:\]
\[\frac{3}{2}y + y + \frac{6}{5}y = 185\]
\[\frac{15}{10}y + \frac{12}{10}y + y = 185\]
\[\frac{27}{10}y + y = 185\]
\[\frac{37}{10}y = 185\]
\[y = 185\ :\frac{37}{10} = 185 \cdot \frac{10}{37}\]
\[y = 5 \cdot 10 = 50.\]
\[x = \frac{3}{2}y = \frac{3}{2} \cdot 50 = 3 \cdot 25 = 75.\]
\[z = \frac{6}{5}y = \frac{6}{5} \cdot 50 = 6 \cdot 10 = 60.\ \]
\[Ответ:75;\ 50;\ 60.\ \]