\[\boxed{\text{5.476.}}\]
\[1)\ \frac{1}{3} \cdot \frac{1}{5} = \frac{1}{2} \cdot \left( \frac{1}{3} - \frac{1}{5} \right)\]
\[\frac{1}{3} \cdot \frac{1}{5} = \frac{1}{15};\]
\[\frac{1}{2} \cdot \left( \frac{1}{3} - \frac{1}{5} \right) = \frac{1}{2} \cdot \left( \frac{5}{15} - \frac{3}{15} \right) =\]
\[= \frac{1}{2} \cdot \frac{2}{15} = \frac{1}{15}.\]
\[верно.\]
\[2)\ \frac{1}{5} \cdot \frac{1}{7} = \frac{1}{2} \cdot \left( \frac{1}{5} - \frac{1}{7} \right)\]
\[\frac{1}{5} \cdot \frac{1}{7} = \frac{1}{35};\]
\[\frac{1}{2} \cdot \left( \frac{1}{5} - \frac{1}{7} \right) = \frac{1}{2} \cdot \left( \frac{7}{35} - \frac{5}{35} \right) =\]
\[= \frac{1}{2} \cdot \frac{2}{35} = \frac{1}{35}.\]
\[верно.\]
\[3)\ \frac{1}{7} \cdot \frac{1}{9} = \frac{1}{2} \cdot \left( \frac{1}{7} - \frac{1}{9} \right)\]
\[\frac{1}{7} \cdot \frac{1}{9} = \frac{1}{63};\]
\[\frac{1}{2} \cdot \left( \frac{1}{7} - \frac{1}{9} \right) = \frac{1}{2} \cdot \left( \frac{9}{63} - \frac{7}{63} \right) =\]
\[= \frac{1}{2} \cdot \frac{2}{63} = \frac{1}{63}.\]
\[верно.\]
\[= \frac{1}{2} \cdot \left( \frac{1}{3} - \frac{1}{15} \right) = \frac{1}{2} \cdot \left( \frac{5}{15} - \frac{1}{15} \right) =\]
\[= \frac{1}{2} \cdot \frac{4}{15} = \frac{2}{15}.\]
\[Что\ и\ требовалось\ доказать.\]