\[\boxed{\mathbf{1027\ (1027)}.\ Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ x - нужная\ дробь,\ \]
\[тогда\ 10x - новая\ дробь.\]
\[По\ условию\ задачи\ известно,\ \]
\[что\ получившаяся\ дробь\ \]
\[на\ 62,01\ больше\ начальной.\]
\[Составим\ уравнение:\]
\(10x - x = 62,01\)
\[9x = 62,01\]
\[x = 62,01\ :9\]
\[x = 6,89 - искомая\ десятичная\ \]
\[дробь.\]
\[Ответ:\ \ 6,89.\]
\[\boxed{\mathbf{1027}\mathbf{.}\mathbf{\ }}\]
\[1)\ \left( x + \frac{5}{12} \right) - \frac{9}{20} = \frac{11}{15}\text{\ \ \ \ \ }\]
\[x + \frac{5}{12} = \frac{11^{\backslash 4}}{15} + \frac{9^{\backslash 3}}{20}\text{\ \ \ \ }\]
\[x + \frac{5}{12} = \frac{44 + 27}{60}\]
\[x + \frac{5}{12} = \frac{71}{60}\text{\ \ \ \ \ \ }\]
\[x = \frac{71}{60} - \frac{5^{\backslash 5}}{12}\]
\[x = \frac{71 - 25}{60} = \frac{46}{60} = \frac{23}{30}\]
\[Ответ:\ \frac{23}{30}.\]
\[2)\ 4\frac{3}{4} - \left( x - 2\frac{5}{8} \right) = 3\frac{5}{6}\]
\[x - 2\frac{5}{8} = 4\frac{3^{\backslash 3}}{4} - 3\frac{5^{\backslash 2}}{6}\]
\[x - 2\frac{5}{8} = 3\frac{21}{12} - 3\frac{10}{12}\]
\[x - 2\frac{5}{8} = \frac{11}{12}\]
\[x = \frac{11^{\backslash 2}}{12} + 2\frac{5^{\backslash 3}}{8} = \frac{22}{24} + 2\frac{15}{24} =\]
\[= 2\frac{37}{24}\]
\[x = 3\frac{13}{24}\]
\[Ответ:3\frac{13}{24}.\]