\[\boxed{\mathbf{1.}}\]
\[\boxed{\mathbf{2.}}\]
\[\frac{7}{9} > \frac{4}{9}\]
\[\frac{8}{11} > \frac{8}{15}\]
\[\frac{5}{7} < \frac{7}{5}\]
\[2\frac{1}{3} > 1\frac{2}{3}\]
\[a - \frac{3}{4} < a - \frac{1}{4}\]
\[\frac{6}{15} - n < \frac{6}{10} - n\]
\[\boxed{\mathbf{3.}}\]
\[\textbf{а)}\ \frac{15}{7} = 2\frac{1}{7}\]
\[\frac{103}{24} = 4\frac{7}{24}\]
\[\textbf{б)}\ 1\frac{3}{5} = \frac{8}{5}\]
\[3\frac{9}{16} = \frac{57}{16}\]
\[\boxed{\mathbf{4.}}\]
\[8 - \left( x + 2\frac{9}{12} \right) = 3\frac{10}{12}\]
\[x + 2\frac{9}{12} = 8 - 3\frac{10}{12}\]
\[x + 2\frac{9}{12} = 7\frac{12}{12} - 3\frac{10}{12}\]
\[x + 2\frac{9}{12} = 4\frac{2}{12}\]
\[x = 4\frac{2}{12} - 2\frac{9}{12}\]
\[x = 3\frac{14}{12} - 2\frac{9}{12}\]
\[x = 1\frac{5}{12}.\]
\[\boxed{\mathbf{5.}}\]
\[1)\ 7\frac{4}{20} - 2\frac{15}{20} = 6\frac{24}{20} - 2\frac{15}{20} =\]
\[= 4\frac{9}{20}\ (дм) - вторая\ сторона\ \]
\[треугольника.\]
\[2)\ 17 - \left( 7\frac{4}{20} + 4\frac{9}{20} \right) =\]
\[= 16\frac{20}{20} - 11\frac{13}{20} = 5\frac{7}{20}\ (дм) -\]
\[третья\ сторона.\]
\[Ответ:5\frac{7}{20}\ дм.\]
\[\boxed{\mathbf{6.}}\]
\[\frac{1}{3} = \frac{5}{15}\]