Решебник по геометрии 9 класс Атанасян ФГОС Задание 394

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 394

Выбери издание
Геометрия 9 класс Атанасян ФГОС Просвещение
 
фгос Геометрия 9 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 9 класс Атанасян ФГОС Просвещение

\[\boxed{\mathbf{394.ОК\ ГДЗ - домашка\ на}\ 5}\]

\[\mathbf{Рисунок\ по\ условию\ задачи:}\]

\[Можно\ построить\ 3\ таких\ \]

\[параллелограмма,\ так\ как\]

\[точки\ A,B\ и\ \text{C\ }фиксированны\ \]

\[и\ может\ меняться\ только\ \]

\[точка\ \text{D.}\]

Издание 2
фгос Геометрия 9 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{394.еуроки - ответы\ на\ пятёрку}}\]

\[\mathbf{Дано:}\]

\[окружность\ (O;r);\]

\[AB - хорда;\]

\[AC,\ BC - касательные.\]

\[\mathbf{Доказать:}\]

\[AC \cap BC = C.\]

\[\mathbf{Доказательство.}\]

\[1)\ AO = OB = r:\]

\[\mathrm{\Delta}ABO - равнобедренный.\]

\[Отсюда:\ \]

\[\angle OAB = \angle OBA = \alpha.\]

\[2)\ По\ теореме\ о\ сумме\ углов\ \]

\[в\ треугольнике:\]

\[\angle AOB =\]

\[= 180{^\circ} - (\angle OAB + \angle OBA) =\]

\[= 180{^\circ} - 2\alpha.\]

\[3)\ \angle AOB = \cup AB\ \]

\[(как\ центральный).\]

\[4)\ AC\bot AO\ \]

\[(так\ как\ AC - касательная):\]

\[\angle CAB = 90{^\circ} - \alpha.\]

\[5)\ \angle AOB = 180{^\circ} - 2\alpha\ и\ \angle CAB =\]

\[= 90{^\circ} - \alpha:\]

\[\angle CAB = \frac{1}{2}\angle AOB = \frac{1}{2} \cup AB.\]

\[6)\ BC\bot OB\ \]

\[(так\ как\ BC - касательная):\]

\[\angle CBA = 90{^\circ} - \alpha\]

\[\angle CBA = \angle CAB = \frac{1}{2} \cup AB.\]

\[7)\ \cup AB < 180{^\circ}\ \]

\[\left( по\ условию\ \text{AB} - не\ диаметр \right):\]

\[о\ \angle CAB = \angle CBA < 90{^\circ}\]

\[\text{AC}\bot\text{AB\ }и\ \text{BC}\bot\text{AB.}\]

\[Следовательно:\ \]

\[AC \cap BC = C.\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам