Решебник по геометрии 9 класс Атанасян ФГОС Задание 1380

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 1380

\[\boxed{\mathbf{1380.еуроки - ответы\ на\ пятёрку}}\]

\[Дано:\ \]

\[\mathrm{\Delta}ABC;\ \]

\[AC = 9\ см;\ \ \]

\[\text{BC} = 12\ см;\ \]

\[AM,\ BN - медианы;\ \]

\[AM\bot BN.\]

\[Найти:\]

\[\text{AB} - ?\]

\[Решение.\]

\[1)\ Выберем\ СК\ так,\ чтобы\ \]

\[A(0;0),\ C(9;0)\text{.\ }\]

\[Пусть\ B(x;y);\ y > 0.\]

\[Тогда:\ \]

\[N\left( \frac{9}{2};0 \right);\ M\left( \frac{x + 9}{2};\ \frac{y}{2} \right).\]

\[2)\ \overrightarrow{\text{AM}}\bot\overrightarrow{\text{BN}} \Longrightarrow AM \cdot BN = 0:\]

\[\left( \frac{x + 9}{2} \right)\left( \frac{9}{2} - x \right) + \frac{y}{2} \cdot ( - y) =\]

\[= 0x( - 2)\]

\[(x + 9)\left( x - \frac{9}{2} \right) + y^{2} = 0\]

\[x^{2} + \frac{9}{2}x - \frac{81}{2} + y^{2} = 0\]

\[x^{2} + 2 \cdot \frac{9}{4}x + \frac{81}{16} + y^{2} =\]

\[= 81\left( \frac{1}{2} + \frac{1}{16} \right)\]

\[\left( x + \frac{9}{4} \right)^{2} + y^{2} = \frac{729}{16}.\]

\[Уравнение\ окружности\ \]

\[с\ центром\ K\left( - \frac{9}{4};0 \right);\]

\[радиусом\ R = \sqrt{\frac{729}{16}} = \frac{27}{4}.\]

\[Кроме\ того,\ точка\ B\ лежит\ на\ \]

\[окружности\ с\ центром\ в\ точке\ \]

\[C(9;0),\ \]

\[радиусом\ \ BC =\]

\[= 12\ :(x - 9)^{2} + y^{2} = 144.\]

\[3)\ Получаем\ систему\ \]

\[уравнений:\]

\[\left\{ \begin{matrix} (x - 9)^{2} + y^{2} = 144 \\ \left( x + \frac{9}{4} \right)^{2} + y^{2} = \frac{729}{16} \\ \end{matrix} \right.\ \]

\[4)\ (x - 9)^{2} - \left( x + \frac{9}{4} \right)^{2} =\]

\[= 144 - \frac{729}{16};\]

\[\left( x - 9 - x - \frac{9}{4} \right)\left( x - 9 + x + \frac{9}{4} \right) =\]

\[= \frac{12^{2} \cdot 4^{2} - 27^{2}}{16}\]

\[- 45(8x - 27) = 21 \cdot 75\]

\[8x - 27 = - 35\]

\[8x = - 8\]

\[x = - 1.\]

\[5)\ Вторая\ координата:\]

\[y^{2} = 144 - (x - 9)^{2} =\]

\[= 144 - 100 = 44 \Longrightarrow\]

\[\Longrightarrow y = 2\sqrt{11}.\]

\[B\left( - 1;2\sqrt{11} \right).\]

\[6)\ AB = \sqrt{( - 1)^{2} + \left( 2\sqrt{11} \right)^{2}} =\]

\[= \sqrt{45} = 3\sqrt{5}\ (см).\]

\[Ответ:AB = 3\sqrt{5}\ см.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам