\[Схематический\ рисунок.\]
\[Дано:\]
\[AB = 28\ см;\]
\[BC = 8\ см;\]
\[AD = 24\ см;\]
\[AE = 42\ см;\]
\[BE = 21\ см.\]
\[Найти:\]
\[\text{CD.}\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}AEB:\]
\[\cos{\angle A} = \frac{AE^{2} + AB^{2} - BE^{2}}{2AE \bullet AB} =\]
\[= \frac{1764 + 784 - 441}{2 \bullet 42 \bullet 28} =\]
\[= \frac{2107}{2352} = \frac{43}{48}.\]
\[2)\ В\ \mathrm{\Delta}ACD:\]
\[AC = AB + BC = 28 + 8 = 36;\]
\[CD^{2} = AC^{2} + AD^{2} - 2AC \bullet AD\cos{\angle A} =\]
\[= 1296 + 576 - 2 \bullet 36 \bullet 24 \bullet \frac{43}{48} =\]
\[= 1872 - 1548 = 324;\ \ \ \]
\[CD = 18\ см.\]
\[Ответ:\ \ 18\ см.\]