Решебник по геометрии 8 класс Атанасян ФГОС Задание 831

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 831

Выбери издание
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
 
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение
Издание 1
Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{831.ОК\ ГДЗ - домашка\ на}\ 5}\]

\[Рисунок\ по\ условию\ задачи:\]

\[\mathbf{Дано:}\]

\[\mathrm{\Delta}ABC;\]

\[M \in AC;K \in BC;\]

\[P \in MK;\ \]

\[\frac{\text{AM}}{\text{MC}} = \frac{\text{CK}}{\text{KB}} = \frac{\text{MP}}{\text{PK}};\]

\[S_{\text{AMP}} = S_{1};\]

\[S_{\text{BKP}} = S_{2}.\]

\[\mathbf{Найти:}\]

\[S_{\text{ABC}} - ?\]

\[\mathbf{Решение.}\]

\[1)\ Допустим:\ \]

\[\ \frac{\text{AM}}{\text{MC}} = \frac{\text{CK}}{\text{KB}} = \frac{\text{MP}}{\text{PK}} = k.\ \]

\[Тогда:\]

\[\frac{S_{\text{AMP}}}{S_{\text{APK}}} = \frac{\text{MP}}{\text{PK}} = k = \frac{S_{1}}{S_{\text{APK}}}\]

\[S_{\text{APK}} = \frac{S_{1}}{k};\]

\[S_{\text{AMK}} = S_{\text{AMP}} + S_{\text{APK}} =\]

\[= \left( 1 + \frac{1}{k} \right) \bullet S_{1}.\]

\[\frac{S_{\text{KAM}}}{S_{\text{KMC}}} = \frac{\text{AM}}{\text{MC}} = k = \frac{\left( 1 + \frac{1}{k} \right) \bullet S_{1}}{S_{\text{KMC}}}\]

\[S_{\text{KMC}} = \frac{\left( 1 + \frac{1}{k} \right) \bullet S_{1}}{k} = \frac{(k + 1)}{k^{2}} \bullet S_{1}.\]

\[Получаем:\]

\[S_{\text{ACK}} = S_{\text{KAM}} + S_{\text{KMC}} =\]

\[= \frac{(k + 1)}{k^{2}} \bullet S_{1} + \frac{(k + 1)}{k^{2}} \bullet S_{1} =\]

\[= \frac{(k + 1)^{2}}{k} \bullet S_{1}.\]

\[Значит:\]

\[\frac{S_{\text{ACK}}}{S_{\text{AKB}}} = \frac{\text{CK}}{\text{KB}} = k = \frac{(k + 1)^{2} \bullet S_{1}}{S_{\text{AKB}}}\]

\[S_{\text{AKB}} = \frac{1}{k} \bullet \left( \frac{k + 1}{k} \right)^{2} \bullet S_{1}\]

\[S_{\text{ABC}} = S_{\text{ACK}} + S_{\text{AKB}} =\]

\[= \frac{(k + 1)^{3}}{k} \bullet S_{1}.\]

\[2)\ \frac{S_{\text{BMP}}}{S_{\text{BPK}}} = \frac{\text{MP}}{\text{PK}} = k = \frac{S_{\text{BMP}}}{S_{2}}\]

\[S_{\text{BMP}} = kS_{2}\]

\[S_{\text{BMK}} = S_{\text{BMP}} + S_{\text{BPK}} =\]

\[= (k + 1) \bullet S_{2}.\]

\[\frac{S_{\text{MCK}}}{S_{\text{MKB}}} = \frac{\text{CK}}{\text{KB}} = k = \frac{S_{\text{MCK}}}{(k + 1)S_{2}}\]

\[S_{\text{MCK}} = k(k + 1)S_{2}\]

\[S_{\text{MCB}} = S_{\text{MCK}} + S_{\text{MKB}} =\]

\[= (k + 1)^{2}S_{2}.\]

\[\frac{S_{\text{BAM}}}{S_{\text{BMC}}} = \frac{\text{AM}}{\text{MC}} = k = \frac{S_{\text{BAM}}}{(k + 1)^{2}S_{2}}\]

\[S_{\text{BAM}} = k \bullet (k + 1)^{2} \bullet S_{2}\]

\[S_{\text{ABC}} = S_{\text{BAM}} + S_{\text{BMC}} =\]

\[= (k + 1)^{3} \bullet S_{2}.\]

\[3)\ Получаем:\]

\[\frac{(k + 1)^{3}}{k} \bullet S_{1} = (k + 1)^{3} \bullet S_{2}\]

\[k^{3} = \frac{S_{1}}{S_{2}}\]

\[k = \sqrt[3]{\frac{S_{1}}{S_{2}}}.\]

\[4)\ S_{\text{ABC}} = (k + 1)^{3} \bullet S_{2} =\]

\[= \left( \sqrt[3]{\frac{S_{1}}{S_{2}}} + 1 \right)^{3} \bullet S_{2} =\]

\[= \frac{\left( \sqrt[3]{S_{1}} + \sqrt[3]{S_{2}} \right)^{3}}{S_{2}} \bullet S_{2} =\]

\[= \left( \sqrt[3]{S_{1}} + \sqrt[3]{S_{2}} \right)^{3}.\]

\[Ответ:S_{\text{ABC}} = \left( \sqrt[3]{S_{1}} + \sqrt[3]{S_{2}} \right)^{3}.\]

Издание 2
фгос Геометрия 8 класс Атанасян ФГОС, Бутузов Просвещение

\[\boxed{\mathbf{831.еуроки - ответы\ на\ пятёрку}}\]

\[\mathbf{Дано:}\]

\[ABCD - выпуклый\ \]

\[четырехугольник;\]

\[O = AC \cap BD.\]

\[P_{\text{AOB}} = P_{\text{BOC}} = P_{\text{COD}} = P_{\text{AOD}} = P.\]

\[\mathbf{Доказать:}\]

\[ABCD - ромб.\]

\[\mathbf{Доказательство.}\]

\[1)\ По\ условию;\]

\[OA + OB + AB =\]

\[= OB + OC + BC;\]

\[OC + OD + CD =\]

\[= OD + OA + AD;\]

\[тогда:\]

\[AC + BD + AB + CD =\]

\[= AC + BD + BC + AD.\]

\[Значит:\]

\[AB + CD = BC + AD.\]

\[2)\ Суммы\ противоположных\ \]

\[сторон\ равны,\ как\ и\ разности\ \]

\[смежных\ сторон:\]

\[AB - BC = AD - CD.\]

\[3)\ Пусть\ AB > BC \Longrightarrow\]

\[\Longrightarrow AD > CD;\ \ AO > OC:\]

\[Неравенство\ для\ сумм\ \]

\[периметров\]

\[P_{\text{AOB}} + P_{\text{AOD}} > P_{\text{BOC}} + P_{\text{COD}}\text{\ \ }\]

\[противоречит\ условию\ задачи.\]

\[4)\ Пусть\ AB < BC:\]

\[неравенство\ для\ сумм\ \]

\[периметров\ \ противоречит\ \]

\[условию;\]

\[P_{\text{AOB}} + P_{\text{AOD}} < P_{\text{BOC}} + P_{\text{COD}}.\]

\[Следовательно:\]

\[AB = BC;\ \ AD = CD.\]

\[5)\ Аналогично\ предыдущему,\ \]

\[из\ равенства\ AB - AD =\]

\[= BC - CD:\ \]

\[AB = AD;\ \ BC = CD.\]

\[Значит:\ \]

\[AB = BC = CD = AD.\]

\[6)\ \ ABCD - параллелограмм\]

\[\ (по\ третьему\ признаку):\]

\[AB = CD;BC = AD.\]

\[Если\ все\ стороны\ \]

\[параллелограмма\ равны,\ то\ \]

\[он\ ромб:\]

\[ABCD - ромб.\]

\[\mathbf{Что\ и\ требовалось\ доказать.}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам