Решебник по геометрии 8 класс Атанасян ФГОС Задание 1395

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 1395

\[\boxed{\mathbf{1395.еуроки - ответы\ на\ пятёрку}}\]

\[\mathbf{а)\ Необходимое\ условие}\mathbf{.}\]

\[Дано:\ \]

\[\mathrm{\Delta}ABC;\ \]

\[c < b < a;\]

\[O_{1}\left( O_{1},\ r \right) - вписаная\ \]

\[окружность;\ \]

\[AA_{1};\ BB_{1} - биссектрисы;\]

\[O_{1} = AA_{1} \cap BB_{1};\]

\[O_{2}\left( O_{2},\ R \right) - описанная\ \]

\[окружность;\]

\[B_{2}O_{2};A_{2}O_{2} - серединные\ \]

\[перпендикуляры;\ \]

\[O_{1}O_{2}\bot BB_{1}.\]

\[Доказать:\]

\[b = \frac{a + c}{2}.\]

\[Доказательство.\]

\[1)\ Отметим\ на\ описанной\ \]

\[окружности\ точку\ \]

\[E = BB_{1} \cap B_{2}O_{2}:\]

\[пересечение\ биссектрисы\ \]

\[и\ серединного\ \]

\[перпендикуляра.\]

\[Проведем\ высоту\ BH\bot AC.\ \]

\[Отметим\ точку\ пересечения\ \]

\[F = O_{1}O_{2} \cap BH.\]

\[2)\ \mathrm{\Delta}BO_{2}E - равнобедренный:\]

\[O_{2}B = O_{2}E = R;\]

\[O_{1}O_{2}\bot BE.\]

\[O_{2}O_{1} - высота,\ медиана\ \]

\[и\ биссектриса \Longrightarrow O_{1}\ B = O_{1}\text{F.}\]

\[\left. \ \begin{matrix} \text{BH}\left| \left| \ O_{1}\text{D\ } \right| \right|EB_{2} \\ O_{1}B = O_{1}\text{E\ \ \ \ \ \ } \\ \end{matrix} \right\} \Longrightarrow HD = DB_{2}.\]

\[AB_{2} = \frac{b}{2}.\]

\[3)\ AH = c \cdot cosA =\]

\[= c \cdot \frac{b^{2} + c^{2} - a^{2}}{2bc} =\]

\[= \frac{b^{2} + c^{2} - a^{2}}{2b}.\]

\[4)\ HD = DB_{2} = \frac{HB_{2}}{2} =\]

\[= \frac{1}{2}\left( AB_{2} - AH \right) =\]

\[= \frac{1}{2}\left( \frac{b}{2} - \frac{b^{2} + c^{2} - a^{2}}{2b} \right) =\]

\[= \frac{b^{2} - (b^{2} + c^{2} - a^{2})}{4b} = \frac{a^{2} - c^{2}}{4b}.\]

\[5)\ AD = AH + HB =\]

\[= \frac{b^{2} + c^{2} - a^{2}}{2b} = \frac{a^{2} - c^{2}}{4b} =\]

\[= \frac{2b^{2} + 2c^{2} - 2a^{2} + a^{2} - c^{2}}{4b} =\]

\[= \frac{2b^{2} + c^{2} - a^{2}}{4b}.\]

\[6)\ Для\ отрезков\ в\ точках\ \]

\[касания\ вписанной\ \]

\[окружности:\]

\[\left\{ \begin{matrix} x + y = c \\ y + z = a \\ x + z = b \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 2x + y + z = b + c \\ y + z = a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x + z = b\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} 2x = b + c - a \\ y = a - z\ \ \ \ \ \ \ \ \ \\ z = b - x\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x = \frac{b + c - a}{2}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ y = a - \frac{a + b - c}{2} = \frac{a + c - b}{2} \\ z = b - \frac{b + c - a}{2} = \frac{a + b - c}{2} \\ \end{matrix} \right.\ \]

\[AD = \frac{b + c - a}{2}.\]

\[7)\ Получаем:\]

\[AD = \frac{2b^{2} + c^{2} - a^{2}}{4b} = \frac{b + c - a}{2}\]

\[2b^{2} + c^{2} - a^{2} =\]

\[= 2b^{2} + 2bc - 2ab\]

\[c^{2} - a^{2} = 2b(c - a)\]

\[(c - a)(c + a - 2b) = 0.\]

\[8)\ По\ условию\ a \neq c:\]

\[c + a - 2b = 0\]

\[2b = a + c\]

\[b = \frac{a + c}{2}.\]

\[Необходимость\ доказана.\]

\[\textbf{б)}\ Достаточное\ условие.\]

\[Дано:\ \]

\[\mathrm{\Delta}ABC,\ O_{1}\left( O_{1},\ r \right) - вписанная\ \]

\[окружность;\ \]

\[AA_{1},\ BB_{1} - биссектрисы;\]

\[O_{1} = AA_{1} \cap BB_{1};\ \]

\[O_{2}\left( O_{2},\ R \right) - описанная\ \]

\[окружность;\ \]

\[B_{2}O_{2};A_{2}O_{2} - серединные\ \]

\[перпендикуляры;\]

\[b = \frac{a + c}{2}.\]

\[Доказать:\]

\[O_{1}O_{2}\bot BB_{1}.\]

\[Доказательство.\]

\[1)\ AH = c \cdot cosA =\]

\[= c \cdot \frac{b^{2} + c^{2} - a^{2}}{2bc} =\]

\[= \frac{b^{2} + c^{2} - a^{2}}{2b} =\]

\[= \frac{\left( \frac{a + c}{2} \right)^{2} + c^{2} - a^{2}}{2 \cdot \frac{a + c}{2}} =\]

\[= \frac{(a + c)^{2} + 4(c - s)(c + a)}{4(a + c)} =\]

\[= \frac{a + c + 4c - 4a}{4} = \frac{5c - 3a}{4}.\]

\[AD = \frac{b + c - a}{2} =\]

\[= \frac{\frac{a + c}{2} + c - a}{2} =\]

\[= \frac{a + c + 2c - 2a}{4} = \frac{3c - a}{4}.\]

\[HD = AD - AH =\]

\[= \frac{3c - a}{4} - \frac{5c - 3a}{4} =\]

\[= \frac{2a - 2c}{4} = \frac{a - c}{2}.\]

\[DB_{2} = AB_{2} - AD =\]

\[= \frac{b}{2} - \frac{3c - a}{4} =\]

\[= \frac{a + c}{4} - \frac{3c - a}{4} = \frac{2a - 2c}{4} =\]

\[= \frac{a - c}{2}.\]

\[2)\ Получаем:\]

\[HD = DB_{2}\frac{\text{BH}\left| \left| O_{1}D \right| \right|EB_{2}}{\Longrightarrow \ }\ O_{1}B =\]

\[= O_{1}\text{E\ }\frac{O_{2}B = O_{2}E = R}{\Longrightarrow}\]

\[O_{2}O_{1} - не\ только\ медиана,\ но\ \]

\[и\ высота:\]

\[O_{1}O_{2}\bot BB_{1}.\]

\[Достаточное\ условие\ доказано.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам