1
\[Рисунок\ в\ учебнике.\]
\[A_{1}B_{1} \parallel A_{2}B_{2} \parallel A_{3}B_{3};\]
\[A_{1}A_{2} = \frac{1}{2}A_{1}A_{3}:\]
\[Решение.\]
\[\frac{B_{1}B_{2}}{A_{2}A_{2}} = \frac{B_{1}B_{3}}{A_{1}A_{3}}\text{\ \ \ }\]
\[\frac{B_{1}B_{3}}{B_{1}B_{2}} = \frac{A_{1}A_{3}}{A_{1}A_{2}} = 2\]
\[B_{1}B_{3} = 2B_{1}B_{2}.\]
\[B_{1}B_{3} = B_{2}B_{3} + B_{1}B_{2}\]
\[B_{2}B_{3} = B_{1}B_{3} - B_{1}B_{2}\]
\[B_{2}B_{3} = 2B_{1}B_{2} - B_{1}B_{2}\]
\[B_{2}B_{3} = B_{1}B_{2};\]
\[B_{1}B_{3} = 2B_{2}B_{3}.\]
\[\mathbf{Ответ:\ \ Б.}\]
2
\[Схематический\ рисунок.\]
\[Дано:\]
\[AA_{1} - медиана;\]
\[BB_{1} - медиана.\]
\[Доказать:\]
\[MA_{1} = \frac{1}{2}\text{AM.}\]
\[Доказательство.\]
\[AA_{1},\ BB_{1} - медианы;\]
\[AA_{1} \cap BB_{1} = M;\]
\[AM\ :MA_{1} = 2\ :1;\]
\[AM = 2MA_{1};\ \ \ \]
\[MA_{1} = \frac{1}{2}\text{AM.}\]
\[Что\ и\ требовалось\ доказать.\]
\[Ответ:\ \ В.\]
3
\[Рисунок\ в\ учебнике.\]
\[Дано:\]
\[A_{1}C_{1} \parallel AC.\]
\[Доказать:\]
\[\frac{\text{BC}}{BC_{1}} = \frac{\text{AC}}{A_{1}C_{1}}.\]
\[Доказательство.\]
\[1)\ Для\ \text{AC\ }и\ A_{1}C_{1}\ и\ секущей\ AB:\]
\[AC \parallel A_{1}C_{1};\]
\[\angle BAC = \angle BA_{1}C_{1}.\]
\[2)\ \mathrm{\Delta}ABC\sim\mathrm{\Delta}A_{1}BC_{1} - первый\ \]
\[признак:\]
\[\angle ABC = \angle A_{1}BC_{1};\]
\[\angle BAC = \angle BA_{1}C_{1}.\]
\[Отсюда:\]
\[\frac{\text{BC}}{BC_{1}} = \frac{\text{AC}}{A_{1}C_{1}}.\]
\[Что\ и\ требовалось\ доказать.\]
\[Ответ:\ \ В.\]
4
\[Схематический\ рисунок.\]
\[Дано:\]
\[BB_{1} - биссектриса\ \angle B;\]
\[AA_{1} - биссектриса\ \angle A;\]
\[O - центр\ впис.\ окружности;\]
\[AB = 8\ см;\]
\[BC = 4\ см;\]
\[AC = 9\ см.\]
\[BO\ :OB_{1}.\]
\[Решение.\]
\[1)\ В\ \mathrm{\Delta}ABC:\]
\[BB_{1} - биссектриса\ \angle B;\]
\[\frac{AB_{1}}{\text{AB}} = \frac{CB_{1}}{\text{BC}}\]
\[\frac{AB_{1}}{CB_{1}} = \frac{\text{AB}}{\text{BC}} = \frac{8}{4} = 2.\]
\[AB_{1} = 2CB_{1};\]
\[AC = AB_{1} + CB_{1};\]
\[2CB_{1} + CB_{1} = 9\]
\[3CB_{1} = 9\]
\[CB_{1} = 3\ см.\]
\[AB_{1} = 2 \bullet 3 = 6\ см.\]
\[AA_{1},\ BB_{1} - биссектрисы:\]
\[AA_{1} \cap BB_{1} = O.\]
\[2)\ В\ \mathrm{\Delta}ABB_{1}:\]
\[AO - биссектриса\ \angle A;\]
\[\frac{\text{BO}}{\text{AB}} = \frac{OB_{1}}{AB_{1}}\]
\[\frac{\text{BO}}{OB_{1}} = \frac{\text{AB}}{AB_{1}} = \frac{8}{6} = \frac{4}{3}.\]
\[Ответ:\ \ В.\]
5
\[Схематический\ рисунок.\]
\[Дано:\]
\[ABCD - параллелограмм;\]
\[MF \parallel CD;\]
\[BM\ :FD = 2\ :1.\]
\[Найти:\]
\[KD\ :BK.\]
\[Решение.\]
\[1)\ MCDF - параллелограмм:\]
\[MC = FD.\]
\[2)\ ABCD - параллелограмм:\]
\[\frac{\text{BM}}{\text{MC}} = \frac{\text{BM}}{\text{FD}} = 2\]
\[BM = 2MC.\]
\[3)\ В\ \mathrm{\Delta}BCD:\]
\[MK \parallel CD;\]
\[\frac{\text{KD}}{\text{MC}} = \frac{\text{BK}}{\text{BM}}\text{\ \ }\]
\[\frac{\text{KD}}{\text{BK}} = \frac{\text{MC}}{\text{BM}} = \frac{1}{2}.\]
\[Ответ:\ \ Б.\]
6
\[Схематический\ рисунок.\]
\[Дано:\]
\[AB = 14\ см;\]
\[BC = 21\ см;\]
\[AD = 4\ см;\]
\[DE \parallel AC.\]
\[Найти:\]
\[BE;\ CE.\]
\[Решение:\]
\[BD = AB - AD = 10\ см;\]
\[DE \parallel AC.\ \ \ \]
\[\frac{\text{BE}}{\text{BD}} = \frac{\text{BC}}{\text{BA}}\]
\[BE = \frac{BC \bullet BD}{\text{BA}}\]
\[BE = \frac{21 \bullet 10}{14} = 15\ см.\]
\[CE = BC - BE = 6\ см.\]
\[\mathbf{Ответ:\ \ }\mathbf{В}\mathbf{.}\]
7
\[Рисунок\ в\ учебнике.\]
\[ABCD - трапеция:\]
\[BC \parallel AD \parallel MN;\]
\[\angle EAD = \angle ECB;\]
\[\angle AED = \angle CEB\]
\[Значит:\]
\[\mathrm{\Delta}AED\sim\mathrm{\Delta}CEB - первый\ \]
\[признак.\]
\[В\ \mathrm{\Delta}ABD;\ ME \parallel AD:\]
\[\mathrm{\Delta}MBE\sim\mathrm{\Delta}ABD - лемма\ о\ подобии.\]
\[В\ \mathrm{\Delta}DCA;\ NE \parallel AD:\]
\[\mathrm{\Delta}NCE\sim\mathrm{\Delta}DCA - лемма\ о\ подобии.\]
\[В\ \mathrm{\Delta}ABC;\ ME \parallel BC:\]
\[\mathrm{\Delta}AME\sim\mathrm{\Delta}ABC - лемма\ о\ подобии.\]
\[В\ \mathrm{\Delta}DCB;\ NE \parallel BC:\]
\[\mathrm{\Delta}DNE\sim\mathrm{\Delta}DCB - лемма\ о\ подобии.\]
\[\mathbf{Ответ}\mathbf{:\ \ Г.}\]
8
\[Рисунок\ в\ учебнике.\]
\[Дано:\]
\[A,C \in окружности.\]
\[Доказать:\]
\[\frac{\text{BE}}{\text{BC}} = \frac{\text{BD}}{\text{BA}}.\]
\[Доказательство.\]
\[AE;\ CD - хорды;\]
\[AE \cap CD = B.\]
\[BA \bullet BE = BC \bullet BD\]
\[\frac{\text{BE}}{\text{BC}} = \frac{\text{BD}}{\text{BA}}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\mathbf{Ответ}\mathbf{:\ \ }\mathbf{Б}\mathbf{.}\]
9
\[Схематический\ рисунок.\]
\[Дано:\]
\[AB,\ CD - хорды;\]
\[AM = 25\ см;\]
\[BM = 4\ см;\]
\[CM = DM.\]
\[Найти:\]
\[\text{CD.}\]
\[Решение.\]
\[AB,\ CD - хорды;\]
\[AB \cap CD = M.\]
\[AM \bullet BM = CM \bullet DM\]
\[CM \bullet CM = 25 \bullet 4\]
\[CM^{2} = 100\]
\[CM = 10\ см.\]
\[CD = CM + DM = 20\ см.\]
\[Ответ:\ \ Г.\]
10
\[Схематический\ рисунок.\]
\[Дано:\]
\[AB = 10\ см;\]
\[BC = 4\ см;\]
\[CA = 8\ см;\]
\[AD = 6\ см.\]
\[Найти:\]
\[\text{BD.}\]
\[Решение:\]
\[\mathrm{\Delta}ABC\sim\mathrm{\Delta}DBC - второй\ признак:\]
\[CD = AC - AD = 2;\]
\[\angle ACB = \angle BCD.\]
\[\frac{\text{CD}}{\text{BC}} = \frac{2}{4} = \frac{1}{2};\ \ \ \]
\[\frac{\text{BC}}{\text{AC}} = \frac{4}{8} = \frac{1}{2}.\]
\[Отсюда:\]
\[\frac{\text{BD}}{\text{AB}} = \frac{\text{CD}}{\text{BC}} = \frac{1}{2}\]
\[BD = \frac{1}{2}AB = 5\ см.\]
\[\mathbf{Ответ}\mathbf{:\ \ }\mathbf{А}\mathbf{.}\]