\[\boxed{\mathbf{1261.ОК\ ГДЗ - домашка\ н}а\ 5}\]
\[Дано:\]
\[m_{1},\ m_{2},\ m_{3};\]
\[A_{1}\left( x_{1};y_{1} \right),\ A_{2}\left( x_{2};y_{2} \right),\ A_{3}\left( x_{3};y_{3} \right).\]
\[Найти:\]
\[x_{c};\ \ \ y_{c}.\]
\[Решение.\]
\[1)\ Из\ системы\ уравнений\ \]
\[найдем\ точку\ равновесия\ двух\ \]
\[масс:\]
\[\left\{ \begin{matrix} m_{1}g\left( x - x_{1} \right) + m_{2}g\left( x - x_{2} \right) = 0 \\ m_{1}g\left( y - y_{1} \right) + m_{2}g\left( y - y_{2} \right) = 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x\left( m_{1} + m_{2} \right) = m_{1}x_{1} + m_{2}x_{2} \\ y\left( m_{1} + m_{2} \right) = m_{1}y_{1} + m_{2}y_{2} \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x_{12} = \frac{m_{1}x_{1} + m_{2}x_{2}}{m_{1} + m_{2}} \\ y_{12} = \frac{m_{1}y_{1} + m_{2}y_{2}}{m_{1} + m_{2}} \\ \end{matrix} \right.\ \]
\[2)\ Заменим\ первые\ две\ массы\ \]
\[найденной\ равновесной\ \]
\[массой:\]
\[Ответ:\ точка\ с\ координатами\]
\[\left\{ \begin{matrix} x_{c} = \frac{m_{1}x_{1} + m_{2}x_{2} + m_{3}x_{3}}{m_{1} + m_{2} + m_{3}} \\ y_{c} = \frac{m_{1}y_{1} + m_{2}y_{2} + m_{3}y_{3}}{m_{1} + m_{2} + m_{3}} \\ \end{matrix} \right.\ .\]